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The major components of delay to rail cars in passing through
yards are waiting for classification and connection to an ap-
propriate outbound train. This paper proposes queuing models
for each of these components which provide expressions for
both the mean and variance of delay times. The models are
then used in an example application to draw inferences re-
garding the effectiveness of alternative strategies for dispatch-
ing trains between yards.

1. INTRODUCTION

Due to the nature of railroad operations, rail cars spend a great deal
of their time in classification yards. According to data gathered by
REEBIE AssociATES!'”) the average loaded rail car requires 8.8 days to
move from its loading point to its destination. Of this time, 6.8 days (77%)
are spent in yards. Thus, finding ways to reduce average yard time is an
important means to improve the quality of service railroads are able to
provide.

In addition, classification yards are the major source of schedule
reliability problems in rail car movements.'*”'3* The importance of trip
time reliability as an attribute of rail service quality implies that we must
also be concerned with the variability in yard delays, as well as with
average delays.

An understanding of classification yard operations is also important to
a thorough analysis of railroad costs. Such a study, in fact, provided the
motivation for the work reported here. The overall project is described
elsewhere!®; this paper concentrates specifically on models of delays
encountered by rail cars in passing through classification yards.
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While in a railyard, a car undergoes four basic operations: (1) inbound
inspection, (2) classification, (3) assembly into an outbound train, and (4)
outbound inspection. It is quite natural to consider these operations as a
series of queues through which the rail car passes. Significant prior work
on the application of queuing models to railroad yards has been done by
HeIN,"Y! SippIQEE!"™ and PETERSEN.!'®'®) Certainly the most compre-
hensive of these studies is the work by Petersen. His efforts served as a
major starting point for the work described here.

The models described below view yard operations from the perspective
of individual cars, rather than from the perspective of trains. This allows
a significant improvement in the ability of the models to analyze policy
options. We begin by describing briefly the sequence of operations per-
formed on a rail car as it passes through a classification yard. For more
detailed discussions, the interested reader is referred to FOLK'® or BECK-
MAN ET AL

Inbound trains pull into a receiving yard area, where road locomotives
and the caboose are taken off the train and the cars are inspected. The
essential elements of a queuing process are certainly evident here. How-
ever, as Petersen!'™ has pointed out, this inspection operation is not a
major bottleneck because additional inspectors can often be assigned
quite easily. Also, this inspection can generally be carried out while the
inbound cars are, for practical purposes, in queue waiting for classifica-
tion. Hence, this inspection step is not a focus of our modeling effort.

Once inspected, the cars are ready to be classified. Classification yards
fall into two general categories: hump (or gravity) yards and flat yards.
In a hump yard, a switch engine gets behind the string of cars, and pushes
the cars, at a speed of about 2 mph, over a hump elevated 10 to 30 feet
above the level of the classification tracks. As a car rolls down the hump,
switches are set (either automatically or manually) to direct the car onto
its proper classification track. In a flat yard, the classifying is done by a
switch engine pushing and pulling cars into and out of the set of classifi-
cation tracks, rather than letting them roll down a hill onto the right
track. Waiting to be classified is a major source of delay to rail cars
passing through a yard,!"'® and thus classification delay is one main focus
of attention in this study.

When the rail cars have arrived on the classification tracks, they are
ready to be assembled into outbound trains. To assemble an outbound
train a yard engine comes into the classification tracks, picks up the cars
on one or more tracks, and assembles these strings of cars, in a specified
order, on the outbound departure tracks. The nature of train assembly as
a queuing process is complicated by the combined effects of switch engine
availability and the schedule of outbound trains. In many cases, the
principal source of delay to cars following classification is not the limited
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availability of switch engines to assemble trains, but the schedule of
outbound trains on which the cars are to depart.””'® In such cases, the
“service process” to be modeled is the schedule of departures and not the
physical assembly of outbound trains.

It should be noted of course that changes in the outbound schedule
may be constrained by the availability of yard engines to make up
outbound trains. Thus, the emphasis on the schedule does not imply that
the potential effects of limited switch engine availability can be ignored
completely. However, since the principal source of delay is typically the
schedule, our analysis will focus there, and we will refer to this as a
“connection” delay, rather than an assembly delay.

Once the train is assembled on the departure tracks, road locomotives
and a caboose are coupled on, an outbound inspection is performed and
the train is ready to depart. The outbound inspection and dispatching
delays will not be analyzed in detail here. The focus of the analysis is on
classification and connection delays, which constitute the bulk of the
time a rail car spends in a yard.

The objective of this paper is to utilize queuing models to draw
inferences regarding strategies for rail service improvement. It is impor-
tant to consider the variability in these delays as well as their average
values, since variability in yard time is a major contributor to rail service
reliability problems. Strategies that might lead to service reliability
improvements are of particular interest.

The remainder of the paper is organized as follows. In Section 2 we
develop a batch arrival model of classification delays. Since the results of
the model remain in the transform domain, we develop “worst” case and
“best” case bounds on the mean and variance of classification delay in
Sections 2.1 and 2.2, respectively. In Section 2.3 we analyze the sensitivity
of classification delays to the variance of train length and the variance of
car service times. The variance of train length is shown to have a much
more significant effect on delay than does the variance of service times.
Section 2.4 analyzes the underlying assumption of Poisson train arrivals.
In Section 3 we present a batch service model of connection delays.
Section 4 discusses the estimation of total delay based on the classification
and connection delay models of Sections 2 and 3, respectively. In partic-
ular, we discuss empirical results on the covariance of classification and
connection delays—the component of total delay which is not explicitly
modeled. Section 5 presents an example of the use of the models to
analyze delays to cars at two sequential yards as a function of the
dispatching policy at the first yard. Two policies are compared: in the
first, irregular length trains are dispatched at constant intervals from the
first yard; in the second, constant length trains are dispatched at irregular
intervals. The first policy results in smaller connection delays at the first
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yard, but in larger classification delays at the second yard. The models
allow us to determine the policy which minimizes either the mean delay
or the variance of delay as a function of the number of cars per day
traveling between the yards in question and of the total utilization level
of the second yard. Section 6 contains conclusions and some thoughts on
appropriate uses of the models presented.

2. CLASSIFICATION DELAY

THERE ARE a number of different queuing models which could be
suggested for the classification operation. Petersen suggests several
possible models, including M/M/S, M/D/S, and M/G/1.

It should be noted that Petersen considers the basic units of arrival to
the system to be trains, not individual cars, and thus he derives param-
eters for service time to classify an entire inbound train. While this
simplifies representation of some elements of the system, it leads to some
confusion about whether or not the output process of the classification
queue is really the input to the connection/assembly queue. Because the
model is conceptually more clear if these are considered to be serial
queues, we have adopted the perspective that the models should be based
on individual rail cars at each stage. This also aids the analysis of delay
variability.

As a result, we must recognize that rail cars arrive at the yard in
batches (trains). This dictates the use of a batch arrival queuing model
to analyze the classification delays. If the batches arrive as a Poisson
process, we can utilize a result developed by BURKE, based on the
earlier work of GAVER.'" This model is denoted M*/G/1, where X is a
random variable corresponding to train length. The distribution of wait-
ing time has the Laplace-Stieltjes transform F(z):

F(z) = ((1 - p)2[1 = B(2)])/L:\[1 - B(2)[{z — A[1 ~ B(2)]} (1)
where

A =mean arrival rate of trains
p=AL,/u = traffic intensity
L, =mean train length (cars)
1t = mean classification service rate (cars/unit time)
B(z) = Laplace-Stieltjes transform of the service time distribution
B(z) = 350 G [B()}
C, = probability that train is of length J.

The average wait time for classification is E(T}):
E(T\) = (1/2w[(1/1 =p)((L2/L,) + pp’e®) — 1] (2)
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where
L, = second moment (about the origin) of train length
o® = variance of service time distribution.

The variance in classification delay is V(T)):
V(T)) = (p/(1 = p)*)py2 + (1 — p)y2] + &2 — £° (3)

where v, and y; are the first and second moments about the origin of the
distribution whose transform is:

G(2) = p[1 - B(2)]/L.z 4)

and £, and £; are the first two moments of the distribution whose
transform is:

W(z) = (1 - B(2))/L:[1 - B(2)]. ®)

Equations 2-5 can be used to predict the mean and variance of
classification delay, given information on the mean arrival rate of inbound
trains, the train length distribution, and the classification service time
distribution. This model assumes a single server (classification facility).
This assumption is certainly appropriate in hump yards. In large flat
yards, however, it is common to have multiple switch engines doing
classification work. In such situations, more complicated multiple-server
models might be considered. However, these multiple servers do not
operate independently, as assumed by multiple-server queuing models,
and thus detailed treatment of the service characteristics is difficult. In
light of this complexity, a more fruitful course is likely to be construction
of an “effective” single-server service-time distribution for the multiple
engines operating together. Equations 2-5 could then be used with this
effective service time distribution to predict yard performance.

The distributions of train length and service time will be specific to a
particular application. In the interest of developing some general insight
into the nature of classification delays, we will focus on two cases which
are likely to provide upper and lower bounds on real situations.

2.1. A “Worst Case” Bound

The first case of interest results from assuming that train lengths are
geometrically distributed with mean L,, and that classification service
times are exponentially distributed with mean p~. This represents a case
of extreme variability in both train length and service times, and hence
provides a “worst case” analysis.

The geometric distribution of train lengths implies that:

C=(1-aa™!, j=12 - 6)
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for some value of a, 0 < a < 1. The mean train length is:
Li=1/1~a). (7

Thus, if average train length is given, the value of « can be found by
manipulation of (7), yielding:

l1—a=1/L; (8a)

or a=L,-1/L;. (8b)
The second moment of train length is:

L:=(1+a)/(1—-a? 9

If service times are exponentially distributed with mean p, the variance
in service times is u7?, and we may write the expression for mean
classification delay as follows:

E(T)) =[1/2p(1 — p)J[((1 + &)/(1 — &) — 1 + 2p]
(10)

= (L — 1+ p)/u(l — p).

If @ = 0, so that trains were all one car long (L, = 1), (10) obviously
reduces to the standard result for mean waiting time in an M/M/1
system. Thus, Equation 10 represents a straightforward generalization to
the case where arrivals are in batches.

To obtain an expression for the variance of classification delays, we

note that if service times are exponentially distributed with mean p~’,
B(z) = p/(pn + 2). (11)
Combining (6) and (11), we have:
B(2) = $7-1 (1 = )’ [/ (n + 2))/
= (1 - a)/a - [alp/(p + 2D} (12)
=(1— au/(w(1 — a) + 2).
Substituting (12) and (8a) into (4) produces the resuit:
G(z) = (/L)1 — [(1 — a)p/(p — ap + 2)])/2)
=p/Li(p(1 — @) + 2) (13)
= (u/L1}/ (/L1 + 2).

This is the transform of an exponential distribution which may be written
as follows:

f(&) = GY(2) = (u/L)e™™, t=0. (14)
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The first two moments of this distribution are:

n=Li/p (15)
vz = 2L /p’. (16)

Substituting (11) and (12) into (5), we obtain:
W(z) = (p + 2)/Li[p(1 — a) + z]. (17)

The first two moments of the distribution whose transform is given by
(17) may be evaluated by noting that:

Li=-W'(0) (18)
§2=W"(0). (19)

The first two derivatives of W(z) can be evaluated quite easily, producing
the following results:

Si=(Li—-1/p (20)
2= (2L\(L: — 1)) /p®. (21)

Substituting (15), (16), (20) and (21) into (3), we obtain the variance of
classification delay:

V(Ty) = (1/p®) L/ (1 ~ p))* = 1]. (22)

2.2. A “Best Case’” Bound

A second case of interest is obtained by assuming constant train lengths
and deterministic service times. This case represents extreme regularity
and provides a “best case” analysis. Deterministic train lengths imply L.
= L% and deterministic service times imply o> = 0. Thus, the expression
for the mean classification delay is:

E(T)) = (L, — 1 + p)/2u(1 - p). (23)

Note that this is exactly one-half as large as the delay in the “worst case.”
This result is analogous to the well-known comparison between the
M/M/1 and M/D/1 systems.

The variance of classification delays may be determined by noting that

for service times that are deterministic and equal to p™ "

B(z) = e (24a)
B(z) = e7lr*/# (24b)
G(2) = (/L) ~ e™ M%) /2] (25)

and W(z) = (1 — e ™™#*)/Li(1 — e~ **). (26)
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Fig. 2. Range of possible values for the standard deviation of waiting time as
a function of p.

Substituting (27)-(30) into (3), we obtain the result for the variance of
classification time:

V(Ty) = (1/12p®)[((1 + 2p)/(1 — p))L* - 11. (31)

The variance given by (31) will always be less than the variance given
by (22). The magnitude of the difference depends upon p and L,, but the
variance of the “worst case” is between 4 and 12 times as large as that of
the “best case.” Table I summarizes the bounds on the mean and variance
of classification delays obtained in this and the previous section.

Equations 10 and 23 can be used to provide likely bounds on observed
mean classification delays, and Equations 22 and 31 provide a similar
reference for variance. Figure 1 shows the range of values for mean delay
as a function of the utilization level, p. Figure 2 provides comparable
information for the standard deviation of delay. Standard deviation is
graphed rather than variance, in order to indicate units comparable with
mean delay. Note that the difference in the bounds for mean delay is a
factor of 2, and the difference is even larger for the standard deviation of
delays. In both Figures 1 and 2, mean train length is assumed to be 66
cars, the value reported by the ASSOCIATION OF AMERICAN RaILROADS!
as the average for all U.S. Class I railroads in 1979.



216 / M. A. TURNQUIST AND M. 8. DASKIN

Since real situations are likely to be somewhere between the bounds
represented by the “worst case” and “best case” analyses, Figures 1 and
2 provide useful information on the range within which observed values
should fall. In order to gain a better understanding of how close to one
bound or the other a particular situation might be, it is useful to examine
the sensitivity of both mean delay and the variance of delay to changes
in the variability of train length and service times.

2.3. Sensitivity Analysis

Let us first examine the expression for mean classification delay.
Holding the mean train length constant, increases in the variance of train
lengths are represented as increases in L,. A useful way to describe the
effect of changes in L; on E(T)) is by defining the elasticity of mean wait
time with respect to train length variability. Denote this quantity 8r; it
is defined as follows:

81 = (BE(T1)/dL2)-(L2/E(Th)). (32)

The elasticity denotes the percentage change in E(T,) which would result
from a 1% change in L.

Differentiating the expression in (2) and substituting into (32), we
obtain the result:

87 = (Ly/L1)/(Ls/L: + pp’e® — (1 — p)). (33)

We note first that this quantity is positive. As we would expect, increases
in train length variability always increase mean delay. Secondly, note
that 8- = 1 when p(u’0®> + 1) < 1. Thus, when service is completely
regular (6> = 0), a given percentage change in L. produces a larger
percentage change in E(T}). As the service times become less regular, as
the mean service rate increases, or as the utilization level increases, E(T))
becomes somewhat less sensitive to variation in train length.

Further insight can be obtained by considering the likely magnitudes
of L., L2, p, u and o in practical situations. The variance of service time
is likely to be less than p~? (exponential service). Thus, the second term
in the denominator of (33) is likely to be between 0 and 1, and will tend
to offset the 1 — p term. Typical average train lengths are between 60 and
70 cars, with a standard deviation in the range of 15-30 cars. Thus, an
approximate range for the ratio Ly/L, is 60-80. It is clear that the term
L:/L, is much larger than either of the other terms and hence, §r = 1.

In a similar fashion, the elasticity of mean delay with respect to the
variance of service times can be developed. Define this elasticity, §s, as
follows:

8s = (3E(T1)/a0*)(0®/ E(Ty)). (34)
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Differentiating Equation 2 and substituting, we obtain the result:
8s = pp’0®/(Lo/ L1 + pp’e® — (1 = p)). (35)

Because L,/L, > pu®o® — (1 — p) for most practical situations, 8s will
be very small. An order of magnitude estimate would be 1072, Thus, we
can see that mean delay for classification is much more sensitive to train
length variation than to service time variation. This has implications for
potential strategies to improve yard performance, an example of which is
discussed in Section 5.

Examination of the sensitivity of the variance in classification delay to
variations in train length and service time is more difficult, but some
similar insights may be obtained. Consider the case of Erlang-k service
times with geometric train lengths. Obviously the “worst case” analysis
of the previous section is a special case (k¢ = 1), and by examining the
sensitivity of variance in classification delays to changes in & (with the
mean service time remaining constant) we can develop an understanding
of the effect of service time variability.

The Laplace transform of an Erlang-& service time distribution may be
written as follows:

B(2) = (m/(m + 2))* (36)

where m/k = pu, the average service rate. The variance in service time is
then k/m?. If we maintain a constant average service time, this variance
will be proportional to 27 thus, increases in % will test the effects of
reduced variability of service times.

If train lengths are geometrically distributed, we can write B(z) as
follows:

B(2) = ¥5-1 (1 — a)a’ '(m/(m + 2))¥

37)
= (1 — a)m*/((m + 2)* — am*). (

The transforms of the distributions whose first two moments are required
for evaluation ¢f the variance are then:

G(2) = (u/L)(((m + 2)* — m*)/(z[(m + 2)* — am*])) (38)
and W(z) = (m + 2)*/(Li[(m + 2)* - am*)). (39)

We can evaluate the first two moments of these distributions by evalu-
ating derivatives. The evaluation of the first two derivatives of G(2)
requires application of I’'Hopital’s rule. In the interest of space, these
derivations are omitted, and only the results will be presented. The first
two moments are as follows:

yi=(1—a+(1+a)h)/2ku(l — a) (40)
v2 = (R*(1 + 4a + a?) + 3k(1 — a?) + 2(1 — @)?)/3R%*(1 — @)®.  (41)
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Evaluation of the derivatives of W(z) is somewhat easier, and yields
the following results:

§1=(L,—- 1)/[‘ (42)
Ea= (L — 1)/kp>)[L1k(1 + o) + 1]. (43)

Note that £, does not depend on k. Clearly, for & = 1, (40)-(43) reduce to
the expressions in (15), (16), (20) and (21). However, by substituting
(40)-(43) into (3), the variance of delay can be evaluated for various
values of k.

Insight on the effect of service time variability may be obtained by
looking at the ratio of the variance in classification delay for Erlang-&
service to the variance in delay when service is exponential. In general,
this ratio depends upon a (or L,, the mean train length), p and &, and will
decrease as k increases (implying increasing regularity of service). How-
ever, the dependence on p is very weak, and for mean train lengths in the
neighborhood of 60 cars, the sensitivity of this ratio to % is also very
limited. To see this, we can find the limiting values of yi, y2, £; and £ as
k — o, The limiting values are as follows:

lims .oy = (1 + @)/2u(1 — @) (44)
Hmgwyz = (1 + 4a + a?)/3u%(1 — a)® (45)
limpoés = (L — 1)/p (46)
limgwés = Li(L; — D(1 + &) /p> 47)

Using these limiting values, we find that the limiting value of the variance
ratio when L, = 60 is approximately 0.99.

We can conclude from this that the variance in classification delay is
only weakly related to the variance in service times. Clearly then, the
substantial difference in variance between the “worst case” and the “best
case” analyses in Sections 2.1 and 2.2 is due largely to the variability of
train length. This result is very similar to the result for ngean delay, and
its implications for strategies to improve yard performance will be dis-
cussed more fully in Section 5.

2.4. Train Arrivals

All of the results in this section are based on an underlying assumption
that train arrivals at the yard may be considered to be a Poisson process.
Therefore, it is worthwhile to examine this assumption more carefully,
both from a theoretical perspective and with empirical data.

Because trains arriving at a particular yard often come from many
different origin points, there is some theoretical basis on which to expect
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Fig. 3. Histogram of observed train interarrival times.

that the pooled input process is approximately Poisson. Cox™! shows that
the superposition of several renewal processes tends rather rapidly to a
limiting Poisson process as the number of individual processes increases.
This is true even if the distributions governing inter-event times in the
individual processes are quite different from exponential. Thus, since in
general there will be several origin points dispatching trains destined for
a particular yard, and these individual processes are superposed as the
arrival process to the yard in question, we might expect the Poisson
model to be quite acceptable, even though individual processes may be
scheduled or semischeduled.

Data gathered at a major Midwestern yard facility support this conclu-
sion empirically. Figure 3 shows the histogram of interarrival times for 45
samples collected. Neither a Chi-square test nor a Kolmogorov-Smirnov
test against an exponential distribution (corrected to account for the fact
that the parameter is estimated from the data; see [12]) rejects the
hypothesis that these data are samples from an exponential distribution
at any reasonable confidence level. The Chi-square test statistic is 0.9588
with 4 degrees of freedom and the K-S test statistic is 0.12. Thus, while
the empirical data set is a small one, it appears that the Poisson model
for train arrivals is appropriate.
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3. CONNECTION DELAYS

ONcE cars have been classified, they must wait for dispatch on an
appropriate outbound train. Operationally, we can think of this process
as being one in which cars arrive on the classification tracks, either singly
or in small groups (cuts), and wait for the designated outbound train to
be “called.” At this point, all the cars for this train are assembled, and
when made up, the train departs. In terms of a queuing model, we may
think of this as a batch-service system in which the “server” is the
outbound train. Sefvice for a batch of cars begins when the appropriate
outbound train is called for assembly, and the service time is the time
between successive outbound trains on which a given cut of cars may be
dispatched. The delay time for connection with the outbound train is
then the waiting time in queue derived from such a queuing model.

It should be noted that this perspective on modeling the system places
principal emphasis on the outbound train schedule as the source of delay
for cars following classification. Delays in assembly due to insufficient
numbers of switch engines and crews are not considered directly. This
effect is only represented indirectly, in terms of late departures of out-
bound trains, for example. The emphasis on schedule is in keeping with
the findings of several previous researchers,”’® and has been recognized
by a rail industry task force on reliability studies.’®!

The average delay for a simple batch-service queue of this type can be
derived easily. Let us assume that individual cars arrive randomly in time
(i.e. as a Poisson process) from the classification operation, and that the
outbound train takes all cars available at the time it is assembled. Because
the classification queue is not Markovian, the assumption that its output
is a Poisson process is not strictly true. However, exact characterization
of the interdeparture times is a very difficult problem, and is unlikely to
produce important additional insights. In order to preserve computational
tractability, we will simply assume that a Poisson approximation is
sufficiently accurate for our purposes. The second assumption means that
train length constraints on the outbound trains are ignored, for the time

being. We will return to this issue following the basic derivation.
Define a random variable, H, with probability density function, g(h),

0 < h < o, as the time interval between successive outbound trains for a
given block of cars. If cars arrive randomly in time on the classification
tracks, the expected delay is:

E(T,) = E(H)/2 + V(H)/2E(H) (48)

where V(H) is the variance in the time interval between successive
departures. Equation 48 is analogous to a result widely used in studies of
urban mass transit systems, expressing the mean waiting time of passen-
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gers at a transit stop. Derivations of the same result in that context can
be found in WELDING™! or OsuNA AND NEWELL.!']

Note that if departures are completely regular (V(H) = 0), the second
term vanishes, and the expected delay is one-half the interval between
trains (e.g., 12 hours for trains dispatched once per day). On the other
hand, if dispatches occur very irregularly, the second term indicates that
expected delay to cars will increase.

An underlying assumption in Equation 48 is that outbound train length
is unlimited, or in queuing terms, that the batch size is infinite. In
practical terms, this assumption is not really true, since there are limits
to the length of train which can be dispatched. Such limits can be the
result of mainline track configuration, power availability, etc. More
sophisticated batch-service queuing models can be constructed to reflect
these constraints, but solution is extremely difficult in all but the simplest
limiting cases.!*) Thus, we have chosen to work with the simpler infinite
batch size model to retain analytic tractability, even though it must be
viewed as an approximation.

The variance of waiting times can also be derived quite readily. The
details are given by FRIEDMAN.?® The result is:

V(T:) = (E(H®)/3E(H)) — [E(T2)]". (49)

In many cases, the distribution of times between successive train depar-
tures, g(h), will be symmetric (or nearly so). When g(A) is symmetric the
skewness is zero, and the third moment may be written as:

E(H®) = 3E(H)V(H) + [EH)F (50)
The variance in wait time is then:
W(T:) = V(H) + [E(H))/3 — [E(T»)T
= V(H) + [E(H)}*/3 - [E(H)/2 + V(H)/2E(H)]* (51)
= [E(H)}/12 + V(H)/2 — [V(H)/2EH)T.

The expression in Equation 51 reflects the dependence of V(T%) on the
mean and variance of the headway distribution between successive out-
bound trains. A primary implication of Equations 48 and 51 is that more
regular dispatch of outbound trains will reduce both the mean and the
variance of connection delays in the yards.

4. PREDICTION OF TOTAL DELAY

THE BULK of the total delay to rail cars in passing through a classification
yard can be represented as the sum of waits for classification and
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connection. Thus, if we define D as the total delay, we have:

E(D) = E(Th) + E(T2), (52)
and V(D) = V(T1) + V(T2) + 2 cov(Th, T:). (53)

To test whether or not the covariance term in (53) is significant, a
random sample of 115 car records from one major yard was used to
estimate correlations between wait time for classification and connection
delay. The sample correlation coefficient was 0.31, with an approximate
95% confidence interval on the true correlation of (0.14, 0.48). Based on
this one set of data, the hypothesis of significant correlation cannot be
rejected.

Note that the sample correlation is positive, indicating that cars which
spend a long time waiting for classification are likely to also spend a long
time waiting for outbound connections. To some extent, this probably
reflects prioritization of cars within the yard. High priority traffic (e.g.
high-value merchandise, TOFC/COFC, etc.) moves through both phases
of the yard more rapidly than low priority cars (e.g. low-value bulk
commodities). However, a second interpretation is also possible. The
positive correlation may indicate that strategies which tend to reduce
long delays in one part of the yard also reduce delays in the other part.
If this is true, a “double” effect can be generated, making such strategies
very effective.

Because the true nature of this covariance is not well understood, and
because the empirical data on which the estimated correlation was based
are limited, the covariance term will not be included in further analysis.
Since the estimated covariance is positive, this omission means that
predictions of effects on variance reduction will be conservative. This
appears to be an appropriate assumption, pending further empirical
analysis of other yard operations.

5. EFFECTS OF TRAIN DISPATCHING STRATEGIES

THE MODELS of classification and connection delays developed in Sections
2 and 3 may be used to indicate the effects of many possible strategies for
reducing the mean and variance of delay time in railyards. In this section,
we examine one class of strategies, focusing on the regularity of dispatch-
ing of outbound trains. Recall that the sensitivity analysis of the classi-
fication delay model indicated that both the mean delay and the variance
of delays were relatively sensitive to inbound train length variation. This
implies that making train lengths relatively constant is a potential means
for reducing classification delays. On the other hand, the connection
delay model indicates that delays are sensitive to the regularity of
outbound dispatches. This raises an important issue. If outbound trains
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at one yard are dispatched regularly so as to reduce connection delays
there, these trains will tend to be of variable length, since the arrival of
cars on the classification tracks is a stochastic process. Thus, the classi-
fication delays at the destination yards for these trains will be increased
because of the train length variability. An alternative strategy would be
to make outbound train lengths relatively constant so as to reduce
classification delays at the destination yards. However, this implies that
intervals between successive outbound trains will be more irregular,
increasing the connection delay at the origin yard.

We will examine two extreme cases of a dispatching strategy for
outbound trains. In one case, trains are dispatched regularly, every H
hours, with whatever traffic is available. In the other case, trains are
dispatched whenever L cars are available, regardless of time. Consider a
prototypical situation involving two yards, A (the dispatching yard) and
B (the terminating yard).

In the first case, since departures from A are at regular intervals, the
expected connection delay is:

E(T24) = H/2. (54)

The variance of the delay can be determined using Equation 51, with
V(H) = 0. This yields the result:

V(Ta) = H?/12. (55)

Since we assume Poisson arrivals of cars on the classification tracks,
the number of cars available at A at a fixed time after the departure of
the previous train is a Poisson random variable. If the arrival rate of cars
per hour for yard B is r, the parameter of this random variable is rH. At
yard B arriving trains then have a length which is Poisson distributed,
with mean rH and second moment rH(rH + 1).

The sensitivity analysis in Section 2 indicated that the service time
distribution plays only a small role in determining the mean and variance
of classification delay. For convenience, let us assume that service is
deterministic, so 02 = 0. The mean delay for classification at yard B is
then found using Equation 2:

E(T\s) = (rH + p5)/2u8(1 — pB) (56)

where the subscript B has been used to denote parameters for yard B.
To evaluate the variance of classification delay at B, we note that:

Ci=(rH)/[je™™, j=0,1,---. (57)
If service times are deterministic, we know that:

B(z) = e %/r2, (58)
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Thus, B(z) is given by:
B(2) = 35~ ((rH)*/j )e ™M [e s}/
= e 350 [rHe )/j! (59)
= exp(—rH )exp(rHe */*»)
= exp{rH(e */*» — 1)].

G(2) is then:
G(z) = (us/rH)(1 — exp[rH(e */** — 1)])/=. (60)
The first two moments, y; and y,, can be evaluated from the derivatives
of G(z) evaluated at z = 0. This yields the following results:
y1=(rH + 1)/2ug (61)
v2 = ((rH)? + 3rH + 1) /3us’. (62)
From (58) and (59), we can also determine W(z):
W(z) = (1 — exp[rH(e *** — 1)])/(rH(1 — e~*/*?)). (63)
?valuating the derivatives of W(z) yields the following results for £; and
2t
§1=rH/2ps (64)
¢, =rH(3 + 2rH)/6ug’. (65)
The variance of classification delay at B can then be evaluated using
Equation 3. The result is:
V(Tis) = ((208 + 1)(rH)? + 6rH + ps(4 — p5))/12p5°(1 — ps)>.  (66)

An alternative strategy at yard A is to dispatch a train whenever a
fixed number of cars are available. Trains will then all be of equal length,
but will depart irregularly. If arrivals of cars for B on the outbound tracks
of yard A are again assumed to follow a Poisson process the time required
to accumulate L cars will have an Erlang distribution with parameters L
and r. The mean time between trains will be L/r and the variance will be
L/r® Average connection delay is then:

E(Tza) =L/2r + (L/r*/(2L/r) = (L + 1)/2r. (67)

The third moment about the origin of an Erlang (L, r) random variable
is L(L + 1)(L + 2)/r’. Using Equation 49, the variance of connection

delay is then:
V(T24) = (L + 1)(L + 5)/12r% (68)
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TABLE 11
Relations Used in Dispatching Policy Comparison
Regular Dispatches Constant Train Lengths

Dispatching Delay (Yard A): Dnspatching Delay (Yard A)-
E(Tu) = H/2 (Eq.54)  E(Twu) =(L+1)/2r (Eq 67)
V(Tu) = H/12 (Eq 55) V(T2) = (L + IML + 5)/127 {Eq. 68)
Classification Delay (Yard B)* Classification Delay (Yard B)*
E(Tis) = (rH + p5)/2s8(1 — ps) (BEq.56)  E(T\s) = (L — 1+ ps)/28(1 — pa) (Eq. 23)

V(Tis) = ((2ps + 1)(rH)* + 6rH + pa(4 —~ pa))/ (Eq.66)  V(Tia) = (1/12u5")((1 + 2p2)/(1 — ps) D/  (Eq.31)

12p8°(1 — pa)® L'-1)
" Assuming deterministic classification service times and Poisson distributed train lengths.
* Assuming deterministic classification service times and constant train lengths

At yard B, inbound trains are of constant length, and if we again
assume deterministic service times, the mean and variance of classifica-
tion delay are given by Equations 23 and 31.

Table II summarizes the key equations needed to compare a regular
dispatch policy with a constant train length policy at yard A. T'o maintain
comparability between the two cases we will insist that the total number
of trains operated is the same. This implies that the constant train length
in the second case must equal the average train length in the first case,
or L = rH. This identity can be used to relate Equations 54 and 55 to
Equations 67 and 68.

We are now able to compare the two dispatching strategies, by exam-
ining the net changes in mean delay and variance of delay summed over
both yards, as the dispatching policy changes. A policy of constant train
length will result in larger mean connection delays at A and lower mean
classification delays at B. There will be a net decrease in mean delay,
relative to regular dispatches, if the savings at B outweigh the increases
at A. Using Equations 23, 54, 56 and 67, this condition may be written as
follows:

ps > (uB — r)/us = pREan. (69)

A similar statement of the conditions under which the constant train
length policy reduces the variance of total delay can be obtained using
Equations 31, 55, 66 and 68. The resulting condition is:

(6L + 2p5 — 1)/us*(1 ~ ps)® > (6L + 5)/r% (70)

Alternatively, the condition may be written as a quadratic equation in
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pPB:
[(6L + 5)us*lps® — 2[(6L + 5)us* + r?ps
+ [(6L + 5)us®> — (6L + 1)r?] < 0.

(71)

The roots of the quadratic are:
pYar =1+ (r* + usrv3(6L + 5)2L + 1) + r*/ps®)/(6L + 5)us’. (72)

We are interested only in the smaller root since the larger root will always
exceed 1.0. Since we require r < pz for steady-state and since 6L >> 1, the
smaller root may be approximated by:

p¥ar = 1 — rv3(6L + 5)(2L + 1)/(6L + 5)us
~ 1—r(6L + 4)/us(6L + 5) (73)

~ 1 —r/us = plgan.
Thus, relation (71) implies that for
p¥ar<pp<1 (74)

the constant train length policy reduces the variance of total delay, where
p¥ar is the smaller root in (72) which may be approximated by (73).

Equations 70-74 implicitly assume that the covariance of connection
delay at yard A and classification delay at yard B is unaffected by changes
in the dispatching policy at yard A. Conditions (69) and (74) depend upon
the utilization level at yard B(pg), the service rate at B(ug), the level of
traffic between A and B(r) and the average train length (L). For opera-
tions planning we may assume p is fixed, since the service rate typically
depends largely on the physical layout of yard B and will not be adjustable
in the short run. Note also that neither condition depends strongly on L,
the mean train length. In fact, condition (69) under which a constant
train length policy reduces the mean delay is independent of L. The
major variables are thus pp and r.

Figure 4 shows these conditions graphically, for a value of pz' = 1
minute (mean classification time per car at yard B) and a mean train
length of L = 60. Thus, for example, if ps = 0.9 and traffic volumes are
greater than 144 cars/day, a constant train length dispatching policy is
superior to a regular schedule. For volumes less than 144 cars/day the
reverse is true. We note that there is a very small region between the two
conditions in which a trade-off must be made between a constant train
length policy to reduce the mean delay and a regular schedule to reduce
the variance. The region becomes larger as the train length decreases and
as the level of traffic increases. However, even with a mean train length
of 40 cars and 500 cars per day between yards A and B, the range in the
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Fig. 4. Regions of effectiveness for alternative dispatching strategies.

utilization level at yard B over which a trade-off must be made is less
than 0.002. Alternatively, for an average train length of 40 cars, the trade-
off region is always less than 3 cars/day for traffic volumes up to 500
cars/day. This region is too small to show in Figure 4.

It should also be noted that this analysis is based on an assumption of
random (Poisson) arrivals of cars on the classification tracks at A. It may
be (for some blocks at least) that this assumption is violated quite badly.
For example, outbound trains may be scheduled based on expected arrival
times of blocks of cars from certain inbound trains. In that case, both the
expected connection delay and its variance would be smaller than pre-
dicted by the models used here. The reductions in delay from regularizing
outbound dispatches would also be overstated. This would tend to shift
the curves in Figure 4 down and to the left, making it effective to run
constant length trains at somewhat lower values of ps and r.

Finally, the relationship of these results to earlier work by Folk!®
should be noted. He conducted a series of simulation experiments with
different dispatching policies on a simple railroad network. His conclu-
sion, in general, was that the best dispatching policy lies somewhere
between strict schedule adherence and insistence on constant train length.
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This is certainly likely to be true, and detailed knowledge of a particular
situation can be used to tailor operating strategies effectively. The major
insight offered by the models developed here is to show the general
nature of the trade-offs involved in evaluating different operating strat-
egies, and to indicate situations in which various types of strategies are
likely to be most effective, as shown in Figure 4. These results can be
obtained without detailed simulation of each particular network, and
thus the models developed here provide useful screening tools.

6. CONCLUSIONS

QUEUING MODELS of basic operations in railroad classification yards have
been developed. The two component models are a batch-arrival model
for analyzing delays to railcars prior to classification, and a batch-service
model for analyzing connection delays subsequent to classification but
prior to departure on outbound trains. The batch-arrival classification
delay model assumes that train arrivals at the yard follow a Poisson
process and that the yard operates as a single server queue. The batch-
service connection delay model assumes that cars arrive at the outbound
tracks according to a Poisson process and that there is no limit on train
lengths.

Limiting cases of the classification delay model with respect to inbound
train length variability and service time variability can be evaluated to
illustrate the range of possible performance likely to be observed in any
particular yard. Table I summarizes these results as well as the additional
assumptions employed. Investigation of the elasticity of mean delay and
variance of delay with respect to both train length variability and service
time variability indicates that service time variations are relatively un-
important. The variability of train lengths (batch sizes) is a much more
important contributor to both the mean and variance of delays prior to
classification.

The model of connection delays indicates that both the average delay
and the variance of delays are affected by the distribution of times
between successive outbound trains. In particular, irregular departures of
outbound trains increase both the mean and the variance of connection
delay.

An interesting trade-off is thus presented in developing an operational
strategy over a network of yards. A simple example involving two yards
is used to illustrate this tradeoff. At yard A cars are classified and wait
for connecting trains to yard B. In order to keep connection delay at A to
a minimum, regular high-frequency trains should be run to B. However,
because the number of cars ready to depart for B in each regular interval
is stochastic, the train lengths arriving at B are variable, increasing the
classification delay there. Alternatively, trains of constant length could
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be dispatched from A to B, in order to reduce the classification delay at
B. However, such a policy implies more irregular dispatching at A, with
attendant increases in connection delay. Analysis of this issue has dem-
onstrated that simple rules-of-thumb can be developed using the queuing
models, to determine the conditions under which each strategy is appro-
priate. In general, these rules depend on the level of traffic between A
and B, and on the utilization level of the classification process at yard B.

This analysis is an example application of the queuing models, and
demonstrates ways in which they can be used effectively in examining
various operating policy decisions for railyards. These models can provide
useful guidance in the development of appropriate operating policies
without resorting to detailed simulation of a large number of options.
Because they are based on a number of simplifying assumptions, however,
these models should be viewed primarily as screening tools.

For example, Figure 4 could be used to make an initial judgment on
dispatching policy between a particular pair of yards. If the volume of
traffic and the utilization level of classification facilities at the destination
yard are such that current operation is represented by a point far from
the dividing line between the regions in Figure 4, a decision is relatively
clear-cut, and more detailed analysis is probably not necessary. However,
if current conditions are very close to the dividing line, the best operating
decision could be sensitive to the simplifying assumptions made in these
models, and more detailed examination of options may be required.

Because several simplifying assumptions are required to make the
analysis tractable, analytic queuing models of railyards (or of other types
of transportation terminals, for that matter) are most effective when used
in preliminary analysis. They can aid in identifying situations and alter-
natives for which decisions are relatively clear, and provide analytic
support for decisions in those cases. They also can identify situations
where the decisions are much less obvious, and provide guidance for more
detailed analysis, either by simulation or other means.
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