Time Dependent Queuing

Mark S. Daskin
Department of IE/MS, Northwestern University
Evanston, IL 60208

Spring, 2006
Outline

- Will look at M/M/s system
- Numerically integration of Chapman-Kolmogorov equations
- Introduction to Time Dependent Queue Analyzer
Chapman Kolmogorov Equations – M/M/s queue

State Transition Diagram

\[\frac{d P_0(t)}{dt} = \mu_1(t)P_1(t) - \lambda_0(t)P_0(t) \]

\[\frac{d P_n(t)}{dt} = \hat{\mu}_{n+1}(t)P_{n+1}(t) + \lambda_{n-1}(t)P_{n-1}(t) - \left[\hat{\mu}_n(t) + \lambda_n(t) \right]P_n(t) \quad n = 1, \ldots \]

\[\hat{\mu}_n(t) = s_n(t)\mu_n(t) \]
First-order difference equations

\[
\frac{d P_0(t)}{dt} = \mu_1(t)P_1(t) - \lambda_1(t)P_0(t)
\]

\[
P_0(t + \Delta t) - P_0(t) \approx \Delta t \left[\mu_1(t)P_1(t) - \lambda_1(t)P_0(t) \right]
\]

\[
P_0(t + \Delta t) = P_0(t) + \Delta t \left[\mu_1(t)P_1(t) - \lambda_1(t)P_0(t) \right]
\]

\[
\frac{d P_n(t)}{dt} = \hat{\mu}_{n+1}(t)P_{n+1}(t) + \lambda_{n-1}(t)P_{n-1}(t) - \left[\hat{\mu}_n(t) + \lambda_n(t) \right]P_n(t)
\]

\[
P_n(t + \Delta t) - P_n(t) \approx \Delta t \left[\hat{\mu}_{n+1}(t)P_{n+1}(t) + \lambda_{n-1}(t)P_{n-1}(t) - \left[\hat{\mu}_n(t) + \lambda_n(t) \right]P_n(t) \right]
\]

\[
P_n(t + \Delta t) = P_n(t) + \Delta t \left[\hat{\mu}_{n+1}(t)P_{n+1}(t) + \lambda_{n-1}(t)P_{n-1}(t) - \left[\hat{\mu}_n(t) + \lambda_n(t) \right]P_n(t) \right]
\]

You can get first order difference equations as shown on the next slide.
First-order difference equations

\[P_0(t + \Delta t) = P_0(t) + \Delta t \left(\mu_1(t) P_1(t) - \lambda_1(t) P_0(t) \right) \]

\[P_n(t + \Delta t) = P_n(t) + \Delta t \left(\hat{\mu}_{n+1}(t) P_{n+1}(t) + \lambda_{n-1}(t) P_{n-1}(t) - \left[\hat{\mu}_n(t) + \lambda_n(t) \right] P_n(t) \right) \quad n = 1, \ldots \]

Given some initial estimate of the state probabilities at time \(t \),

we can use these equations to estimate the state probabilities at some time \(t + \Delta t \)

and so on....
Practical implementation

- Make state space finite (max state=\(N\))
 - Adjust equation for \(P_N\) accordingly

- Divide the day into small time slices
 - E.g., use \(\Delta t=60\) seconds or less.

- Begin with steady state estimate of probabilities
 - Increment \(s\) as needed to get steady state during any time slice that has \(s\mu<\lambda\).
Use fourth-order Runge-Kutta to step between time slices and not first-order Euler as shown above

- If any $P_n(t)$ becomes negative, set it to 0
- Renormalize all state probabilities at each time period
- Compute largest % change in probabilities (for prob > 0.0001 for example)
Practical implementation

- If any state probabilities go negative, start process over with smaller Δt.
- If largest % change too big, cycle through probabilities again. Repeat as needed.
Which state probabilities influence $P_n(t+\Delta t)$

General case

- $n-1,t$ influences $n,t+\Delta t$
- n,t influences $n+1,t$
- n,t influences $n,t+\Delta t$

For state 0

- $0,t$ influences $0,t+\Delta t$
- $1,t$ influences $N-1,t$

For state N

- $N-1,t$ influences N,t
- N,t influences $N,t+\Delta t$
Euler vs 4th Order Runge-Kutta

Euler

- Slope based on 1 estimate

Runge-Kutta

- Slope based on 4 estimates, giving accuracy of 4th order expansion
Euler vs 4th Order Runge-Kutta

\begin{align*}
\text{Euler} & \quad P_n(t + \Delta t) = P_n(t) + f_n[P_n(t),t] \Delta t \\
\text{Runge-Kutta} & \quad P_n(t + \Delta t) = P_n(t) + \frac{k_1(t) + 2k_2(t) + 2k_3(t) + k_4(t)}{3} \Delta t/
\quad k_1(t) = f_n[P_n(t),t] \Delta t/2 \\
\quad k_2(t) = f_n[P_n(t) + k_1(t),t + 0.5\Delta t] \Delta t/2 \\
\quad k_3(t) = f_n[P_n(t) + k_2(t),t + 0.5\Delta t] \Delta t/2 \\
\quad k_4(t) = f_n[P_n(t) + 2k_3(t),t + \Delta t] \Delta t/2
\end{align*}

\begin{align*}
& f_0(t) = \mu_1(t) P_1(t) - \lambda_1(t) P_0(t) \\
& f_n(t) = \hat{\mu}_{n+1}(t) P_{n+1}(t) + \lambda_{n-1}(t) P_{n-1}(t) - [\hat{\mu}_n(t) + \lambda_n(t)] P_n(t) \quad n = 1, \ldots, N-1 \\
& f_N(t) = \lambda_{N-1}(t) P_{N-1}(t) - \hat{\mu}_N(t) P_N(t)
\end{align*}
Graphical representation of solution procedure

Evolve PMFs over time
Cycle back as needed
Be sure your copy looks like this. Earlier versions had an error in the code.

You should see *Class Version* underneath my e-mail address.
Major blocks of inputs/outputs

Demand info

Service info

Cost inputs

Computational info

Primary graph output

State prob graphs

Summary output

Control Buttons

Be sure your copy has the version number in the top line. Earlier versions of the code contain an error.
Set times form

Duty times

Graph of duty times
Start times page

Set starting times for full time and part-time employees

Graph of demand and service capacity

Click to return to main menu
Steady state base case output

Note that peak number in the system corresponds in time to peak demand.
Time Dependent Case

Note that peak number in the system under time dependent conditions is shifted to the right of the peak demand and is lower than then steady-state peak.

Will look at PMF at t=400
Comparison of PMFs at $t=400$

Note that time dependent probabilities are higher at low end reflecting the smaller mean at $t=400$.

Time Dependent

Steady-state
Note that peak $P(\text{wait})$ in the system under time dependent conditions is shifted to the right of the peak demand and is lower than the steady-state peak.
More complex behavior

Note that the program does not require steady state conditions in each time slice.
Summary

- Time dependent queuing analysis is important.
- Peaks are shifted to the right of steady state peaks.
- Does not require steady-state conditions in all periods.