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Abstract Recent events have highlighted the need for planners to consider the risk of disruptions
when designing supply chain networks. Supply chain disruptions have a number of
causes and may take a number of forms. Once a disruption occurs, there is very little
recourse regarding supply chain infrastructure since these strategic decisions cannot
be changed quickly. Therefore, it is critical to account for disruptions during the design
of supply chain networks so that they perform well even after a disruption. Indeed,
these systems can often be made substantially more reliable with only small additional
investments in infrastructure.

Planners have a range of options available to them in designing resilient supply chain
networks, and their choice of approaches will depend on the financial resources avail-
able, the decision maker’s risk preference, the type of network under consideration,
and other factors. In this tutorial, we present a broad range of models for designing
supply chains that are resilient to disruptions. We first categorize these models by
the status of the existing network: a network may be designed from scratch, or an
existing network may be modified to prevent disruptions at some facilities. We next
divide each of these categories based on the underlying optimization model (facility
location or network design) and the risk measure (expected cost or worst-case cost).

Keywords facility location, network design, disruptions

1. Introduction

1.1. Motivation

Every supply chain faces disruptions of various sorts. Recent examples of major disruptions
are easy to bring to mind: Hurricanes Katrina and Rita in 2005 on the U.S. Gulf Coast
crippled the nation’s oil refining capacity [65], destroyed large inventories of coffee and
lumber [3, 71], and forced the rerouting of bananas and other fresh produce [3]. A strike at
two General Motors parts plants in 1998 led to the shutdowns of 26 assembly plants and
ultimately prevented the company from building over 500,000 vehicles and led to a $809
million quarterly loss [13, 85, 86]. An eight-minute fire at a Philips semiconductor plant in
2001 brought one customer, Ericsson, to a virtual standstill while another, Nokia, weathered
the disruption [55]. Moreover, smaller-scale disruptions occur much more frequently. For
example, Wal-Mart’s Emergency Operations Center receives a call virtually every day from
a store or other facility with some sort of crisis [57].
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There is evidence that superior contingency planning can significantly mitigate the effect of
a disruption. For example, Home Depot’s policy of planning for various types of disruptions
based on geography helped it get 23 of its 33 stores within Katrina’s impact zone open after
one day and 29 after one week [35], and Wal-Mart’s stock pre-positioning helped make it
a model for post-hurricane recovery [57]. Similarly, Nokia weathered the 2001 Phillips fire
through superior planning and quick response, allowing it ultimately to capture a substantial
portion of Ericsson’s market share [55].

Recent books and articles in the business and popular press have pointed out the vul-
nerability of today’s supply chains to disruptions and the need for a systematic analysis of
supply chain vulnerability, security, and resiliency [33, 49, 60, 73, 81]. One common theme
among these references is that the tightly optimized, just-in-time, lean supply chain practices
championed by practitioners and OR researchers in recent decades increase the vulnerabil-
ity of these systems. Many have argued that supply chains should have more redundancy
or slack to provide a buffer against various sorts of uncertainty. Nevertheless, companies
have historically been reluctant to invest much in additional supply chain infrastructure or
inventory, despite the large payoff that such investments can have if a disruption occurs.

We argue that decision makers should take supply uncertainty (of which disruptions are
one variety) into account during all phases of supply chain planning, just as they account
for demand uncertainty. This is most critical during strategic planning since these decisions
cannot easily be modified. When a disruption strikes, there is very little recourse for strategic
decisions like facility location and network design. (By contrast, firms can often adjust
inventory levels, routing plans, production schedules, and other tactical and operational
decisions in real time in response to unexpected events.)

It is easy to view supply uncertainty and demand uncertainty as two sides of the same
coin. For example, a toy manufacturer may view stockouts of a hot new toy as a result of
demand uncertainty, but to a toy store the stockouts look like a supply-uncertainty issue.
Many of the techniques that firms use to mitigate demand uncertainty—safety stock, supplier
redundancy, forecast refinements—are also applicable in the case of supply uncertainty.
However, it is dangerous to assume that supply uncertainty is a special case of demand
uncertainty or that it can be ignored by decision makers, because much of the conventional
wisdom gained from studying demand uncertainty does not hold under supply uncertainty.
For example, under demand uncertainty, it may be optimal for a firm to operate fewer DCs
because of the risk pooling effect and economies of scale in ordering [27], while under supply
uncertainty it may be optimal to operate more, smaller DCs so that a disruption to one of
them has a smaller impact. Snyder and Shen [92] discuss this and other differences between
the two forms of uncertainty.

In this tutorial, we discuss models for designing supply chain networks that are resilient
to disruptions. The objective is to design the supply chain infrastructure so that it operates
efficiently (i.e., at low cost) both normally and when a disruption occurs. We discuss mod-
els for facility location and network design. Additionally, we analyze fortification models
which can be used to improve the reliability of infrastructure systems which are already in
place and for which a complete reconfiguration would be cost prohibitive. The objective of
fortification models is to identify optimal strategies for allocating limited resources among
possible mitigation investments.

1.2. Taxonomy and Tutorial Outline

We classify models for reliable supply chain design along three axes:

(1) Design vs. fortification. Is the model intended to create a reliable network assuming
that no network is currently in place, or to fortify an existing network to make it more
reliable?
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(2) Underlying model. Reliability models generally have some classical model as their
foundation. In this tutorial, we consider models that are based on facility location and
network design models.

(3) Risk measure. As in the case of demand uncertainty, models with supply uncertainty
need some measure for evaluating risk. Examples include expected cost and minimax
cost.

This tutorial is structured according to this taxonomy. Section 3 discusses design models,
while Section 4 discusses fortification models, with subsections in each to divide the models
according to the remaining two axes. These sections are preceded by a review of the related
literature in Section 2 and followed by conclusions in Section 5.

2. Literature Review

We discuss the literature that is directly related to reliable supply chain network design
throughout this tutorial. In this section, we briefly discuss several streams of research that
are indirectly related. For more detailed reviews of facility location models under uncertainty,
the reader is referred to [28, 67, 87]. An excellent overview of stochastic programming theory
in general is provided in [43].
Network Reliability Theory The concept of supply chain reliability is related to net-
work reliability theory [22, 83, 84], which is concerned with calculating or maximizing the
probability that a graph remains connected after random failures due to congestion, disrup-
tions, or blockages. Typically this literature considers disruptions to the links of a network,
but some papers consider node failures [32], and in some cases the two are equivalent.
Given the difficulty in computing the reliability of a given network, the goal is often to
find the minimum-cost network with some desirable property like 2-connectivity [63, 64],
k-connectivity [11, 39], or special ring structures [34]. The key diference between network
reliability models and the models we discuss in this tutorial is that network reliability mod-
els are primarily concerned with connectivity; they consider the cost of constructing the
network but not the cost that results from a disruption, whereas our models consider both
types of costs and generally assume connectivity after a disruption.
Vector-Assignment Problems Weaver and Church [101] introduce the vector-

assignment P -median problem (VAPMP), in which each customer is assigned to several
open facilities according to an exogenously determined frequency. For example, a customer
might receive 75% of its demand from its nearest facility, 20% from its second-nearest, and
5% from its third-nearest. This is similar to the assignment strategy used in many of the
models below, but in our models the percentages are determined endogenously based on
disruptions rather than given as inputs to the model. A vector-assignment model based on
the uncapacitated fixed-charge location problem (UFLP) is presented by [70].
Multiple, Excess, and Backup Coverage Models The maximum covering problem
[19] locates a fixed number of facilities to maximize the demands located within some radius
of an open facility. It implicitly assumes that the facilities (e.g., fire stations, ambulances)
are always available. Several subsequent papers have considered the congestion at facilities
when multiple calls are received at the same time. The maximum expected covering location
model (MEXCLM) [25, 26] maximizes the expected coverage given a constant, systemwide
probability that a server is busy at any given time. The constant-busy-probability assump-
tion is relaxed in the maximum availability location problem (MALP) [72]. A related stream
of research explicitly considers the queueing process at the locations; these “hypercube”
models are interesting as descriptive models but are generally too complex to embed into
an optimization framework [10, 53, 54]. See [24, 7] for a review of expected and backup
coverage models. The primary differences between these models and the models we discuss
in this tutorial are (1) the objective function (coverage vs. cost) and (2) the reason for a
server’s unavailability (congestion vs. disruptions).
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Inventory Models with Supply Disruptions There is a stream of research in the
inventory literature that considers supply disruptions in the context of classical inventory
models such as the EOQ [68, 5, 88], (Q,R) [40, 69, 61, 62], and (s,S) [1] models. More recent
models examine a range of strategies for mitigating disruptions, including dual sourcing [97],
demand management [98], supplier reliability forecasting [96, 99], and product-mix flexibility
[95]. Few models consider disruptions in multi-echelon supply chain or inventory systems;
exceptions include [50, 92].
Process Flexibility There are at least five strategies that can be employed in the face of
uncertain demands: expanding capacity, holding reserve inventory, improving the demand
forecasts, introducing product commonality to delay the need for specialization, and adding
flexibility to production plants. A complete review of each of these strategies is beyond the
scope of this tutorial. Many of these strategies are fairly straightforward. Process flexibility,
on the other hand, warrants a brief discussion. Jordan and Graves [48] compare the expected
lost sales that result from using a set of fully flexible plants, in which each plant could
produce each product, to a configuration in which each plant produces only two products
and the products are chained in such a way that plant A produces products 1 and 2, plant
B produces products 2 and 3, and so on, with the last plant producing the final product
as well as product 1. They refer to this latter configuration as a 1-chain. They find that a
1-chain provides nearly all of the benefits of total flexibility when measured by the expected
number of lost sales. Based on this, they recommend that flexibility be added to create fewer,
longer chains of products and plants. Bish et al. [12] study capacity allocation schemes for
such chains (e.g., allocate capacity to the nearest demands, to the highest-margin demands,
or to a plant’s primary product). They find that if the capacity is either very small or
very large relative to the expected demand, the gains from managing flexible capacity are
outweighed by the need for additional component inventory at the plants and the costs of
order variability at suppliers. They then provide guidelines for the use of one allocation
policy relative to others based on the costs of component inventory, component lead times,
and profit margins. Graves and Tomlin [38] extend the Jordan and Graves results to multi-
stage systems. They contrast the configuration loss with the configuration inefficiency. The
former measures the difference between the shortfall with total flexibility and the shortfall
with a particular configuration of flexible plants. The configuration inefficiency measures the
effect of the interaction between stages in causing the shortfall for a particular configuration.
They show that this, in turn, is caused by two phenomena: floating bottlenecks and stage-
spanning bottlenecks. Stage-spanning bottlenecks can arise even if demand is deterministic,
as a result of misallocations of capacity across the various stages of the supply chain. Beach
et al. [4] and de Toni and Tonchia [29] provide more detailed reviews of the manufacturing
flexibility literature.
Location of Protection Devices A number of papers in the location literature have
addressed the problem of finding the optimal location of protection devices to reduce the
impact of possible disruptions to infrastructure systems. For example, Carr et al. [16]
present a model for optimizing the placement of sensors in water supply networks to detect
maliciously-injected contaminants. James and Salhi [46] investigate the problem of plac-
ing protection devices in electrical supply networks to reduce the amount of outage time.
Flow-interception models [6] have also been used to locate protection facilities. For example,
[44] and [37] use flow-interception models to locate inspection stations so as to maximize
hazard avoidance and risk reduction in transportation networks. The protection models dis-
cussed in this chapter differ from those models in that they do not seek for the optimal
placement of physical protection devices or facilities. Rather they aim at identifying the
most critical system components to harden or protect with limited protection resources (for
example through structural retrofit, fire safety, increased surveillance, vehicle barriers, and
monitoring systems).
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3. Design Models

3.1. Introduction

In this section we discuss design models for reliable facility location and network design.
These models, like most facility location models, assume that no facilities currently exist;
they aim to choose a set of facility locations that perform well even if disruptions occur. It is
also straightforward to modify these models to account for facilities that may already exist
(e.g., by setting the fixed cost of those facilities to 0 or adding a constraint that requires
them to be open). In contrast, the fortification models discussed in Section 4 assume that
all facility sites have been chosen and attempt to decide which facilities to fortify (pro-
tect against disruptions). One could conceivably formulate an integrated design/fortification
model whose objective would be to locate facilities and to identify a subset of those facil-
ities to fortify against attacks. Formulation of such a model is a relatively straightforward
extension of the models we present below, though its solution would be considerably more
difficult as it would result in (at least) a tri-level optimization problem.

Most models for both classical and reliable facility location are design models, as “forti-
fication” is a relatively new concept in the facility location literature. In the sub-sections
that follow, we introduce several design models, classified first according to the underlying
model (facility location or network design) and then according to risk measure (expected or
worst-case cost).

3.2. Facility Location Models

3.2.1. Expected Cost Models In this section, we define the reliability fixed-charge
location problem (RFLP; [89]), which is based on the classical uncapacitated fixed-charge
location problem (UFLP; [2]). There is a fixed set I of customer locations and a set J of
potential facility locations. Each customer i∈ I has an annual demand of hi units, and each
unit shipped from facility j ∈ J to customer i ∈ I incurs a transportation cost of dij . (We
will occasionally refer to dij as the “distance” between j and i, and use this notion to refer to
“closer” or “farther” facilities.) Each facility site has an annual fixed cost fj that is incurred
if the facility is opened. Any open facility may serve any customer (that is, there are no
connectivity restrictions), and facilities have unlimited capacity. There is a single product.

Each open facility may fail (be disrupted) with a fixed probability q. (Note that the failure
probability q is the same at every facility. This assumption allows a compact description of
the expected transportation cost. Below, we relax this assumption and instead formulate a
scenario-based model that requires more decision variables but is more flexible.) Failures are
independent, and multiple facilities may fail simultaneously. When a facility fails, it cannot
provide any product, and the customers assigned to it must be re-assigned to non-disrupted
facility.

If customer i is not served by any facility, the firm incurs a penalty cost of θi per unit
of demand. This penalty may represent a lost-sales cost or the cost of finding an alternate
source for the product. It is incurred if all open facilities have failed, or if it is too expensive
to serve a customer from its nearest functional facility. To model this, we augment the facility
set J to include a dummy “emergency facility,” called u, that has no fixed cost (fu = 0)
and never fails. The transportation cost from u to i is diu ≡ θi. Assigning a customer to the
emergency facility is equivalent to not assigning it at all.

The RFLP uses two sets of decision variables:

Xj =

{

1, if facility j is opened,

0, otherwise

Yijr =

{

1, if customer i is assigned to facility j at level r,

0, otherwise
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A “level-r” assignment is one for which there are r closer open facilities. For example,
suppose that the three closest open facilities to customer i are facilities 2, 5, and 8, in
that order. Then facility 2 is i’s level-0 facility, 5 is its level-1 facility, and 8 is its level-2
facility. Level-0 assignments are to “primary” facilities that serve the customer under normal
circumstances, while level-r assignments (r > 0) are to “backup” facilities that serve it if
all closer facilities have failed. A customer must be assigned to some facility at each level r

unless it is assigned to the emergency facility at some level s ≤ r. Since we don’t know in
advance how many facilities will be open, we extend the index r from 0 through |J |−1, but
Yijr will equal 0 for r greater than or equal to the number of open facilities.

The objective of the RFLP is to choose facility locations and customer assignments to
minimize the fixed cost plus the expected transportation cost and lost-sales penalty. We
formulate it as an integer programming problem as follows:

(RFLP) minimize
∑

j∈J

fjXj +
∑

i∈I

|J|−1
∑

r=0





∑

j∈J\{u}

hidijq
r(1− q)Yijr + hidiuqrYius



 (1)

subject to
∑

j∈J

Yijr +

r−1
∑

s=0

Yiur = 1 ∀i∈ I, r = 0, . . . , |J | − 1 (2)

Yijr ≤Xj ∀i∈ I, j ∈ J, r = 0, . . . , |J | − 1 (3)
|J|−1
∑

r=0

Yijr ≤ 1 ∀i∈ I, j ∈ J (4)

Xj ∈ {0,1} ∀j ∈ J (5)
Yijr ∈ {0,1} ∀i∈ I, j ∈ J, r = 0, . . . , |J | − 1 (6)

The objective function (1) minimizes the sum of the fixed cost and the expected trans-
portation and lost-sales costs. The second term reflects the fact that if customer i is assigned
to facility j at level r, it will actually be served by j if all r closer facilities have failed (which
happens with probability qr) and if j itself has not failed (which happens with probability
1− q). Note that we can compute this expected cost knowing only the number of facilities
that are closer to i than j is but not which facilities those are. This is a result of our assump-
tion that every facility has the same failure probability. If, instead, customer i is assigned
to the emergency facility at level r, then it incurs the lost-sales cost diu ≡ θi if its r closest
facilities have failed (which happens with probability qr).

Constraints (2) require each customer i to be assigned to some facility at each level r,
unless i has been assigned to the emergency facility at level s < r. Constraints (3) prevent an
assignment to a facility that has not been opened, and constraints (4) prohibit a customer
from being assigned to the same facility at more than one level. Constraints (5) and (6)
require the decision variables to be binary. However, constraints (6) can be relaxed to non-
negativity constraints since single-sourcing is optimal in this problem, as it is in the UFLP.

Note that we do not explicitly enforce the definition of “level-r assignment” in this for-
mulation; that is, we do not require Yijr = 1 only if there are exactly r closer open facilities.
Nevertheless, in any optimal solution, this definition will be satisfied since it is optimal to
assign customers to facilities by levels in increasing order of distance. This is true since
the objective function weights decrease for larger values of r, so it is advantageous to use
facilities with smaller dij at smaller assignment levels. A slight variation of this result is
proven rigorously in [89].

Snyder and Daskin [89] present a slightly more general version of this model in which
some of the facilities may be designated as “non-failable.” If a customer is assigned to a non-
failable facility at level r, it does not need to be assigned at any higher level. In addition, [89]
considers a multi-objective model that minimizes the weighted sum of two objectives, one of
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which corresponds to the UFLP cost (fixed cost plus level-0 transportation costs) while the
other represents the expected transportation cost (accounting for failures). By varying the
weights on the objectives, [89] generate a tradeoff curve and use this to demonstrate that the
RFLP can produce solutions that are much more reliable than the classical UFLP solution
but only slightly more expensive by the UFLP objective. This suggests that reliability can
be “bought” relatively cheaply. Finally, [89] also consider a related model that is based on
the P -median problem [41, 42] rather than the UFLP. They solve all of these models using
Lagrangian relaxation.

In general, the optimal solution to the RFLP uses more facilities than that of the UFLP.
This tendency toward diversification occurs so that any given disruption affects a smaller
portion of the system. It may be viewed as a sort of “reverse risk-pooling effect” in which it is
advantageous to spread the risk of supply uncertainty across multiple facilities (encouraging
decentralization). This is in contrast to the classical risk-pooling effect, which encourages
centralization to pool the risk of demand uncertainty.

Berman, Krass, and Menezes [8] consider a model similar to (RFLP), based on the P -
median problem rather than the UFLP. They allow different facilities to have different failure
probabilities, but the resulting model is highly nonlinear and in general must be solved
heuristically. They prove that the Hakimi property applies if co-location is allowed. (The
Hakimi property says that optimal locations exist at the nodes of a network, even if facilities
are allowed on the links.) In [9], the same authors present a variant of this model in which
customers do not know which facilities are disrupted before visiting them and must traverse
a path from one facility to the next until an operational facility is found. For example, a
customer might walk to the nearest ATM, find it out of order, and then walk to the ATM
that is nearest to the current location. They investigate the spatial characteristics of the
optimal solution and discuss the value of reliability information.

An earlier attempt at addressing reliability issues in P -median problems is discussed in
[31], which examines the problem of locating P unreliable facilities in the plane so as to
minimize expected travel distances between customers and facilities. As in the RFLP, the
unreliable P -median problem in [31] is defined by introducing a probability that a facility
becomes inactive but does not require the failures to be independent events. The problem is
solved through a heuristic procedure. A more sophisticated method to solve the unreliable
P -median problem was subsequently proposed in [56]. In [31], the authors also present the
unreliable (P,Q)-center problem where P facilities must be located while taking into account
that Q of them may become unavailable simultaneously. The objective is to minimize the
maximal distance between demand points and their closest facilities.

The formulation given above for (RFLP) captures the expected transportation cost with-
out using explicit scenarios to describe the uncertain events (disruptions). An alternate
approach is to model the problem as a two-stage stochastic programming problem in which
the location decisions are first-stage decisions and the assignment decisions are made in the
second stage, after the random disruptions have occurred. This approach can result in a
much larger IP model since there are 2|J| possible failure scenarios and each requires its
own assignment variables. That is, in the formulation above we have |J | Y variables for
each i, j (indexed Yijr , r = 0, . . . , |J | − 1), while in the scenario-based formulation we have
2|J| variables for each i, j. However, formulations built using this approach can be solved
using standard stochastic programming methods. They can also be adapted more readily to
handle side constraints and other variations.

For example, suppose facility j can serve at most bj units of demand at any given time.
These capacity constraints must be satisfied both by “primary” assignments and by re-
assignments that occur after disruptions. Let S be the set of failure scenarios such that
ajs = 1 if facility j fails in scenario s, and let qs be the probability that scenario s occurs.
Finally, let Yijs equal 1 if customer i is assigned to facility j in scenario s and 0 otherwise.
The capacitated RFLP can be formulated using the scenario-based approach as follows:
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(CRFLP) minimize
∑

j∈J

fjXj +
∑

s∈S

qs

∑

i∈I

∑

j∈J

hidijYijs (7)

subject to
∑

j∈J

Yijs = 1 ∀i∈ I, s∈ S (8)

Yijs ≤Xj ∀i∈ I, j ∈ J, s∈ S (9)
∑

i∈I

hiYijs ≤ (1− ajs)bj ∀j ∈ J, s∈ S (10)

Xj ∈ {0,1} ∀j ∈ J (11)
Yijs ∈ {0,1} ∀i∈ I, j ∈ J, s∈ S (12)

Note that the set J in this formulation still includes the emergency facility u. The objective
function (7) computes the sum of the fixed cost plus the expected transportation cost,
taken across all scenarios. Constraints (8) require every customer to be assigned to some
facility (possibly u) in every scenario, and constraints (9) require this facility to be opened.
Constraints (10) prevent the total demand assigned to facility j in scenario s from exceeding
j’s capacity and prevent any demand from being assigned if the facility has failed in scenario
s. Constraints (11) and (12) are integrality constraints. Integrality can be relaxed to non-
negativity for the Y variables, if single-sourcing is not required. (Single-sourcing is no longer
optimal because of the capacity constraints.)

(CRFLP) can be modified easily without destroying its structure, in a way that (RFLP)
cannot. For example, if the capacity during a disruption is reduced but not eliminated, we
can simply re-define ajs to be the proportion of the total capacity that is affected by the
disruption. We can also easily allow the demands and transportation costs to be scenario
dependent.

The disadvantage, of course, is that the number of scenarios grows exponentially with
|J |. If |J | is reasonably large, enumerating all of the scenarios is impractical. In this case,
one generally must use sampling techniques such as sample average approximation (SAA;
[51, 59, 80]), in which the optimization problem is solved using a subset of the scenarios
sampled using Monte Carlo simulation. By solving a series of such problems, one can develop
bounds on the optimal objective value and the objective value of a given solution. Ülker
and Snyder [100] present a method for solving (CRFLP) that uses Lagrangian relaxation
embedded in an SAA scheme.

An ongoing research project has focused on extending the models discussed in this section
to account for inventory costs when making facility location decisions. Jeon, Snyder, and
Shen [47] consider facility failures in a location–inventory context that is similar to the
models propsed recently by [27, 82], which account for the cost of cycle and safety stock.
The optimal number of facilities in the models by [27, 82] is smaller than those in the UFLP
due to economies of scale in ordering and the risk-pooling effect. Conversely, the optimal
number of facilities is larger in the RFLP than in the UFLP to reduce the impact of any
single disruption. The location–inventory model with disruptions proposed by [47] finds a
balance between these two competing tendencies.

3.2.2. Worst-Case Cost Models Models that minimize the expected cost, as in Sec-
tion 3.2.1, take a risk-neutral approach to decision-making under uncertainty. Risk-averse
decision makers may be more inclined to minimize the worst-case cost, taken across all sce-
narios. Of course, in this context it does not make sense to consider all possible scenarios,
since otherwise the worst-case scenario is always the one in which all facilities fail. Instead,
we might consider all scenarios in which, say, at most three facilities fail, or all scenarios
with probability at least 0.01, or some other set of scenarios identified by managers as worth
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planning against. In general, the number of scenarios in such a problem is smaller than in
the expected-cost problem since scenarios that are clearly less costly than other scenarios
can be omitted from consideration. For example, if we wish to consider scenarios in which
at most three facilities fail, we can ignore scenarios in which two or fewer fail.

To formulate the minimax-cost RFLP, we introduce a single additional decision variable
U , which equals the maximum cost.

(MMRFLP) minimize U (13)

subject to
∑

j∈J

fjXj +
∑

i∈I

∑

j∈J

hidijYijs ≤U ∀s∈ S (14)

∑

j∈J

Yijs = 1 ∀i∈ I, s∈ S (15)

Yijs ≤Xj ∀i∈ I, j ∈ J, s∈ S (16)
Xj ∈ {0,1} ∀j ∈ J (17)

Yijs ∈ {0,1} ∀i∈ I, j ∈ J, s∈ S (18)

In this formulation we omit the capacity constraints (10), but they can be included without
difficulty. Unfortunately, minimax models tend to be much more difficult to solve exactly,
either with general-purpose IP solvers or with customized algorithms. This is true for clas-
sical problems as well as for (MMRFLP).

The regret of a solution under a given scenario is the relative or absolute difference between
the cost of the solution under that scenario and the optimal cost under that scenario. One can
modify (MMRFLP) easily to minimize the maximum regret across all scenarios by replacing
the right-hand side of (14) with U +zs (for absolute regret) or zs(1+U) (for relative regret).
Here, zs is the optimal cost in scenario s, which must be determined exogenously for each
scenario and provided as an input to the model.

Minimax-regret problems may require more scenarios than their minimax-cost counter-
parts since it is not obvious a priori which scenarios will produce the maximum regret. On
the other hand, they tend to result in a less pessimistic solution than minimax-cost mod-
els do. Snyder and Daskin [91] discuss minimax-cost and minimax-regret models in further
detail and provide computational results.

One common objection to minimax models is that they are overly conservative since
the resulting solution plans against a single scenario, which may be unlikely even if it is
disastrous. In contrast, expected-cost models like (CRFLP) produce solutions that perform
well in the long run but may perform poorly in some scenarios. Snyder and Daskin [91]
introduce a model that avoids both of these problems by minimizing the expected cost (7)
subject to a constraint on the maximum cost that can occur in any scenario (in effect,
treating U as a constant in (14)). An optimal solution to this model is guaranteed to perform
well in the long run (due to the objective function) but is also guaranteed not to be disastrous
in any given scenario. This approach is closely related to the concept of p-robustness in
robust optimization problems [52, 90]. One computational disadvantage is that, unlike the
other models we have discussed, it can be difficult (even NP-hard) to find a feasible solution
or to determine whether a given instance is feasible. See [91] for more details on this model,
and for a discussion of reliable facility location under a variety of other risk measures.

Church et al. [18] use a somewhat different approach to model worst-case cost design
problems, the rationale being that the assumption of independent facility failures underlying
the previous models does not hold in all application settings. This is particularly true when
modeling intentional disruptions. As an example, a union or a terrorist could decide to
strike those facilities in which the greatest combined harm (as measured by increased costs,
disrupted service, etc) is achieved. In order to design supply systems able to withstand
intentional harms by intelligent perpetrators, [18] proposes the resilient P -median problem.



10 INFORMS—New Orleans 2005, c© 2005 INFORMS

This model identifies the best location of P facilities so that the system works as well as
possible (in terms of weighted distances) in the event of a maximally disruptive strike.
The model is formulated as a bilevel optimization model, where the upper-level problem
of optimally locating P facilities embeds a lower-level optimization problem which is used
to generate the weighted distance after a worst-case loss of R of these located P facilities.
This bilevel programming approach has been widely used to assess worst-case scenarios
and identify critical components in existent systems and will be discussed in more depth
in Section 4.2.2. Church et al. [18] demonstrate that optimal P -median configurations can
be rendered very inefficient in terms of worst-case loss, even for small values of R. They
also demonstrate that resilient design configurations can be near optimal in efficiency as
compared to the optimal P -median configurations, but at the same time maintain high
levels of efficiency after worst-case loss. A form of the resilient design problem has also been
developed for a coverage-type service system [66]. The resilient coverage model finds the
optimal location of a set of facilities to maximize a combination of initial demand coverage
and the minimum coverage level following the loss of one or more facilities. There are several
approaches that one can employ to solve this problem, including the successive use of super
valid inequalities [66], reformulation into a single-level optimization problem when R = 1 or
R = 2 [18], or by developing a special search tree. Research is underway to model resilient
design for capacitated problems.

3.3. Network Design Models

We now turn our attention from reliability models based on facility location problems to
those based on network design models. We have a general network G = (V,A). Each node
i∈ V serves as either a source, sink, or transshipment node. Source nodes are analogous to
facilities in Section 3.2 while sink nodes are analogous to customers. The primary difference
between network design models and facility location ones is the presence of transshipment
nodes. Product originates at the source nodes and is sent through the network to the sink
nodes via transshipment nodes.

Like the facilities in Section 3.2, the non-sink nodes in these models can fail randomly.
The objective is to make open/close decisions on the non-sink nodes (first-stage variables)
and determine the flows on the arcs in each scenario (second-stage variables) to minimize
the expected or worst-case cost. (Many classical network design problem involve open/close
decisions on arcs, but the two are equivalent through a suitable transformation.)

3.3.1. Expected Cost Each node j ∈ V has a supply bj. For source nodes, bj represents
the available supply and bj > 0; for sink nodes, bj represents the (negative of the) demand
and bj < 0; and for transshipment nodes, bj = 0. There is a fixed cost fj to open each non-
sink node. Each arc (i, j) has a cost of dij for each unit of flow transported on it and each
non-sink node j has a capacity kj . The node capacities can be seen as production limitations
for the supply nodes and processing resource restrictions for the transhipment nodes.

As in Section 3.2.1, we let S be the set of scenarios, and ajs = 1 if node j fails in scenario
s. Scenario s occurs with probability qs. To ensure feasibility in each scenario, we augment V

by adding a dummy source node u that makes up any supply shortfall caused by disruptions
and a dummy sink node v that absorbs any excess supply. There is an arc from u to each
(non-dummy) sink node; the per-unit cost of this arc is equal to the lost-sales cost for that
sink node (analogous to θi in Section 3.2.1). Similarly, there is an arc from each (non-dummy)
source node to v whose cost equals 0. The dummy source node and the dummy sink node
have infinite supply and demand, respectively.

Let V0 ⊆ V be the set of supply and transhipment nodes, i.e., V0 = {j ∈ V |bj ≥ 0}. We
define two sets of decision variables. Xj = 1 if node i is opened and 0 otherwise, for j ∈ V0,
and Yijs is the amount of flow sent on arc (i, j) ∈A in scenario s ∈ S. Note that the set A

represents the augmented set of arcs, including the arcs outbound from the dummy source
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node and the arcs inbound to the dummy sink node. With this notation, the reliable network
design model (RNDP) is formulated as follows:

(RNDP) minimize
∑

j∈V0

fjXj +
∑

s∈S

qs

∑

(i,j)∈A

dijYijs (19)

subject to
∑

(j,i)∈A

Yjis −
∑

(i,j)∈A

Yijs = bj ∀j ∈ V \ {u, v}, s∈ S (20)

∑

(j,i)∈A

Yjis ≤ (1− ajs)kjXj ∀j ∈ V0, s∈ S (21)

Xj ∈ {0,1} ∀j ∈ V0 (22)
Yijs ≥ 0 ∀(i, j)∈A,s∈ S (23)

The objective function computes the fixed cost and expected flow costs. Constraints (20)
are the flow-balance constraints for the non-dummy nodes; they require the net flow for
node j (flow out minus flow in) to equal the node’s deficit bj in each scenario. Constraints
(21) enforce the node capacities and prevent any flow emanating from a node j that has not
been opened (Xj = 0) or has failed (ajs = 1). Taken together with (20), these constraints are
sufficient to ensure that flow is also prevented into nodes that are not opened or have failed.
Constraints (22) and (23) are integrality and non-negativity constraints, respectively. Note
that in model (19)–(23), no flow restrictions are necessary for the two dummy nodes. The
minimization nature of the objective function guarantees that the demand at each sink node
is supplied from regular source nodes whenever this is possible. Only if the node disruption
is such to prevent some demand node i from being fully supplied will there be a positive
flow on the link (u, i) at the cost dui = θi. Similarly, only excess supply which cannot reach
a sink node will be routed to the dummy sink.

This formulation is similar to the model introduced by [75]. Their model is intended for
network design under demand uncertainty, while ours considers supply uncertainty, though
the two approaches are quite similar. To avoid enumerating all of the possible scenarios, [75]
uses SAA. A similar approach is called for to solve (RNDP) since, as in the scenario-based
models in Section 3.2.1, if each node can fail independently, we have 2|V0| scenarios.

A scenario-based model for the design of failure-prone multi-commodity networks is dis-
cussed in [36]. However, the model in [36] does not consider the expected costs of routing
the commodities through the network. Rather, it determines the minimum-cost set of arcs
to be constructed so that the resulting network continues to support a multi-commodity
flow under any of a given set of failure scenarios. Only a restricted set of failure scenarios
is considered, where each scenario consists of the concurrent failure of multiple arcs. [36]
also discusses several algorithmic implementations of Benders decomposition to solve this
problem efficiently.

3.3.2. Worst-Case Cost One can modify (RNDP) to minimize the worst-case cost rather
than the expected cost in a manner analogous to the approach taken in Section 3.2.2:
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minimize U (24)

subject to
∑

i∈V0

fiXi +
∑

(i,j)∈A

dijYijs ≤U ∀s∈ S (25)

(20)− (23)

Similarly, one could minimize the expected cost subject to a constraint on the cost in

any scenario, as proposed above. Bundschuh, Klabjan, and Thurston [15] take a similar
approach in a supply chain network design model (with open/close decisions on arcs). They

assume that suppliers can fail randomly. They consider two performance measures, which

they call reliability and robustness. The reliability of the system is the probability that all

suppliers are operable, while robustness refers to the ability of the supply chain to maintain

a given level of output after a failure. The latter measure is perhaps a more reasonable
goal since adding new suppliers increases the probability that one or more will fail and

hence decreases the system’s “reliability.” They present models for minimizing the fixed

and (non-failure) transportation costs subject to constraints on reliability, robustness, or

both. Their computational results support the claim made by [89, 91] and others that large

improvements in reliability can often be attained with small increases in cost.

4. Fortification Models

4.1. Introduction

Computational studies of the models discussed in the previous sections demonstrate that the

impact of facility disruptions can be mitigated by the initial design of a system. However,
redesigning an entire system is not always reasonable given the potentially large expense

involved with relocating facilities, changing suppliers or reconfiguring networked systems.

As an alternative, the reliability of existing infrastructure can be enhanced through efficient

investments in protection and security measures. In light of recent world events, the identifi-

cation of cost-effective protection strategies has been widely perceived as an urgent priority
which demands not only greater public policy support [94], but also the development of

structured and analytical approaches [49]. Planning for facility protection, in fact, is an

enormous financial and logistical challenge if one considers the complexity of today’s logis-

tics systems, the interdependencies among critical infrastructures, the variety of threats and

hazards, and the prohibitive costs involved in securing large numbers of facilities. Despite
the acknowledged need for analytical models able to capture these complexities, the study

of mathematical models for allocation of protection resources is still in its infancy. The few

fortification models which have been proposed in the literature are discussed in this section,

together with possible extensions and variations.

4.2. Facility Location Models

Location models which explicitly address the issue of optimizing facility protection assume

the existence of a supply system with P operating facilities. Facilities are susceptible to
deliberate sabotage or accidental failures, unless protective measures are taken to prevent

their disruption. Given limited protection resources, the models aim to identify the subset

of facilities to protect in order to minimize efficiency losses due to intentional or accidental

disruptions. Typical measures of efficiency are distance traveled, transportation cost, or

captured demand.
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4.2.1. Expected Cost Models In this section, we present the P -median fortification
problem (PMFP; [76]). This model builds upon the well known P -median problem [41, 42].
It assumes that the P facilities in the system have unlimited capacity and that the system
users receive service from their nearest facility. As in the design model RFLP, each facility
may fail or be disrupted with a fixed probability q. A disrupted facility becomes inoperable,
so that the customers currently served by it must be reassigned to their closest non-disrupted
facility. Limited fortification resources are available to protect Q of the P facilities. A pro-
tected facility becomes immune to disruption. PMFP identifies the fortification strategy
that minimizes the expected transportation costs.

The model definition builds upon the notation used in the previous sections, with the
exception that J now denotes the set of existent, rather than potential, facilities. Addi-
tionally, let ik denote the kth closest facility to customer i and let dk

i be the expected
transportation cost between customer i and its closest operational facility, given that the
k − 1 closest facilities to i are not protected and the kth closest facility to i is protected.
These expected costs can be calculated as follows.

dk
i =

k−1
∑

j=1

qj−1(1− q)diij
+ qk−1diik

(26)

The PMFP uses two sets of decision variables:

Zj =

{

1, if facility j is fortified,

0, otherwise

Wik =











1, if the k− 1 closest facilities to customer i are not protected but the kth

closest facility is,

0, otherwise

Then PMFP can be formulated as the following mixed integer program:

(PMFP) minimize
∑

i∈I

P−Q+1
∑

k=1

hid
k
i Wik (27)

subject to

P−Q+1
∑

k=1

Wik = 1 ∀i∈ I, (28)

Wik ≤Zik
∀i∈ I, k = 1, . . . , P −Q + 1 (29)

Wik ≤ 1−Zik−1
∀i∈ I, k = 2, . . . , P −Q + 1 (30)

∑

j∈J

Zj = Q (31)

Wik ∈ {0,1} ∀i∈ I, k = 1, . . . , P −Q + 1 (32)
Zj ∈ {0,1} ∀j ∈ J (33)

The objective function (27) minimizes the weighted sum of expected transportation costs.
Note that the expected costs dk

i and the variables Wik need only be defined for values of
k between 1 and P − Q + 1. In fact, in the worst case, the closest protected facility to
customer i is its (P − Q + 1)st-closest facility. This occurs if the Q fortified facilities are
the Q furthest facilities from i. If all of the P − Q closest facilities to i fail, customer i

is assigned to its (P − Q + 1)st-closest facility. Assignments to facilities that are further
than the (P −Q + 1)st-closest facility will never be made in an optimal solution. For each
customer i, constraints (28) force exactly one of the P −Q + 1 closest facilities to i to be
its closest protected facility. The combined use of constraints (29) and (30) ensures that the
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variable Wik that equals 1 is the one associated with the smallest value of k such that the
kth closest facility to i is protected. Constraint (31) specifies that only Q facilities can be
protected. Finally, constraints (32) and (33) represent the integrality requirements of the
decision variables.

The PMFP is an integer programming model and can be solved with general purpose
mixed-integer programming software. Possible extensions of the model include the cases
where facilities have different failure probabilities and where fortification only reduces, but
does not eliminate, the probability of failure. Unfortunately, PMFP cannot be easily adjusted
to handle capacity restrictions. As for the design version of the problem, if the system
facilities have limited capacities, explicit scenarios must be used to model possible disruption
patterns. The capacitated version of PMFP can be formulated in an analogous way to the
scenario-based model CRFLP discussed in Section 3.2.1. Namely:

(CPMFP) minimize
∑

s∈S

qs

∑

i∈I

∑

j∈J

hidijYijs (34)

subject to
∑

j∈J

Yijs = 1 ∀i∈ I, s∈ S (35)

∑

i∈I

hiYijs ≤ (1− ajs)bj + ajsbjZj ∀j ∈ J, s∈ S (36)

∑

j∈J

Zj = Q (37)

Xj ∈ {0,1} ∀j ∈ J (38)
Yijs ∈ {0,1} ∀i∈ I, j ∈ J, s∈ S (39)

CPMFP uses the same parameters ajs and set S as CRFLP to model different scenarios.
It also assumes that the set of existent facilities J is augmented with the unlimited-capacity
emergency facility u. CPMFP differs from CRFLP only in a few aspects: no decisions must
be made in terms of facility location, so the fixed cost for locating facilities are not included
in the objective; the capacity constraints (36) must reflect the fact that if a facility j is
protected (Zj = 1), then that facility remains operable (and can supply bj units of demand)
even in those scenarios s which assume its failure (ajs = 1). Finally, constraint (37) must be
added to fix the number of possible fortifications.

Note that in both models PMFP and CPMFP, the cardinality constraints (31) and (37)
can be replaced by more general resource constraints to handle the problem where each
facility requires a different amount of protection resources and there is a limit on the
total resources available for fortification. Alternately, one could incorporate this cost into
the objective function and omit the budget constraint. The difference between these two
approaches is analogous to that between the P -median problem and the UFLP.

4.2.2. Worst-Case Cost Models When modeling protection efforts, it is crucial to
take account for hazards to which a facility may be exposed. It is evident that protecting
against intentional attacks is fundamentally different from protecting against acts of nature.
Whereas nature hits at random and does not adjust its behavior to circumvent security
measures, an intelligent adversary may adjust its offensive strategy depending on which
facilities have been protected, for example by hitting different targets. The expected cost
models discussed in Section 4.2.1 do not take into account the behavior of adversaries and
are therefore more suitable to model situations in which natural and accidental failures are
a major concern. The models in this section have been developed to identify cost-effective
protection strategies against malicious attackers.

A natural way of looking at fortification problems involving intelligent adversaries is within
the framework of a leader-follower or Stackelberg game [93], in which the entity responsible
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for coordinating the fortification activity, or defender, is the leader and the attacker, or
interdictor, is the follower. Stackelberg games can be expressed mathematically as bilevel
programming problems [30]: the upper level problem involves decisions to determine which
facilities to harden, whereas the lower level problem entails the interdictor’s response of
which unprotected facilities to attack to inflict maximum harm. Even if in practice we
cannot assume that the attacker is always able to identify the best attacking strategy, the
assumption that the interdictor attacks in an optimal way is used as a tool to model worst-
case scenarios and estimate worst-case losses in response to any given fortification strategy.

The worst-case cost version of PMFP was formulated as a bilevel program in [79]. The
model, called the R-interdiction median model with fortification (RIMF), assumes that the
system defender has resources to protect Q facilities, whereas the interdictor has resources
to attack R facilities, with Q + R < P . In addition to the fortification variables Zj defined
in Section 4.2.1, RIMF uses the following interdiction and assignment variables:

Sj =

{

1, if facility j is interdicted,

0, otherwise

Yij =

{

1, if customer i is assigned to facility j after interdiction,

0, otherwise

Additionally, the formulation uses the set Tij = {k ∈ J |dik > dij} defined for each customer
i and facility j. Tij represents the set of existing sites (not including j) that are farther than
j is from demand i. The RIMF can then be stated mathematically as follows:

(RIMF) minimize H(Z) (40)

subject to
∑

j∈J

Zj = Q (41)

Zj ∈ {0,1} ∀j ∈ J (42)

where H(Z) = maximize
∑

i∈I

∑

j∈J

hidijYij (43)

∑

j∈J

Yij = 1 ∀i∈ I (44)

∑

j∈J

Sj = R (45)

∑

h∈Tij

Yih ≤ Sj ∀i∈ I, j ∈ J (46)

Sj ≤ 1−Zj ∀j ∈ J (47)
Sj ∈ {0,1} ∀j ∈ J (48)
Yij ∈ {0,1} ∀i∈ I, j ∈ J (49)

In the above bilevel formulation, the leader allocates exactly Q fortification resources
(41) to minimize the highest possible level of weighted distances or costs, H , (40) deriving
from the loss of R of the P facilities. The fact that H represents worst-case losses after
the interdiction of R facilities is enforced by the follower problem, whose objective involves
maximizing the weighted distances or service costs (43). In the lower level interdiction
problem (RIM; [21]), constraints (44) state that each demand point must be assigned to a
facility after interdiction. Constraint (45) specifies that only R facilities can be interdicted.
Constraint (46) maintains that each customer must be assigned to its closest open facility
after interdiction. More specifically, these constraints state that if a given facility j is not
interdicted (Sj = 0), a customer i cannot be served by a facility which is further than j from
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i. Constraints (47) link the upper- and lower-level problems by preventing the interdiction
of any protected facility. Finally, constraints (42), (48) and (49) represent the integrality
requirements for the fortification, interdiction and assignment variables, respectively. Note
that the binary restrictions for the Yij variables can be relaxed, as an optimal solution with
fractional Yij variables only occurs when there is a distance tie between two non-disrupted
closest facilities to customer i. Such cases, although interesting, do not affect the optimality
of the solution.

Church and Scaparra [20] and Scaparra and Church [78] demonstrate that it is possible to
formulate RIMF as a single-level program and discuss two different single-level formulations.
However, both formulations require the explicit enumeration of all possible interdiction
scenarios and, consequently, their applicability is limited to problem instances of modest
size. A more efficient way of solving RIMF is through the implicit enumeration scheme
proposed in [79] and tailored to the bilevel structure of the problem.

A stochastic version of RIMF, in which an attempted attack on a facility is successful only
with a given probability, can be obtained by replacing the lower-level interdiction model
(43)-(49) with the probabilistic R-interdiction median model introduced in [17].

Different variants of the RIMF model, aiming at capturing additional levels of complexity,
are currently under investigation. Ongoing studies focus, for example, on the development
of models and solution approaches for the capacitated version of RIMF.

RIMF assumes that at most R facilities can be attacked. Given the large degree of uncer-
tainty characterizing the extent of man-made and terrorist attacks, this assumption should
be relaxed to capture additional realism. An extension of RIMF which include random num-
bers of possible losses as well as theoretical results to solve this expected loss version to
optimality are currently under development.

Finally, bilevel fortification models similar to RIMF can be developed for protecting facil-
ities in supply systems with different service protocols and efficiency measures. For example,
in emergency service and supply systems, the effects of disruption may be better measured
in terms of the reduction in operational response capability. In these problem settings, the
most disruptive loss of R facilities would be the one causing the maximal drop in user
demand that can be supplied within a given time or distance threshold. This problem can
be modeled by replacing the interdiction model (43)-(49) with the R-interdiction cover-
ing problem introduced in [21] and by minimizing, instead of maximizing, the upper-level
objective function H , which now represents the worst case demand coverage decrease after
interdiction.

4.3. Network Design Models

The literature dealing with the disruption of existent networked systems has primarily
focused on the analysis of risk and vulnerabilities through the development of interdiction
models. Interdiction models have been used by several authors to identify the most critical
components of a system, i.e., those nodes or linkages that, if disabled, cause the greatest
disruption to the flow of services and goods through the network. A variety of models, which
differ in terms of objectives and underlying network structures, have been proposed in the
interdiction literature. For example, the effect of interdiction on the maximum flow through
a network is studied in [102] and [103]. Israeli and Wood [45] analyze the impact of link
removals on the shortest path length between nodes. Lim and Smith [58] treat the multi-
commodity version of the shortest path problem, with the objective of assessing shipment
revenue reductions due to arc interdictions. A review of interdiction models is provided in
[21].

Whereas interdiction models can help reveal potential weaknesses in a system, they do
not explicitly address the issue of optimizing security. Scaparra and Cappanera [77] demon-
strate that securing those network components that are identified as critical in an optimal
interdiction solution will not necessarily provide the most cost-effective protection against
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disruptions. Optimal interdiction is a function of what is fortified, so it is important to cap-
ture this interdependency within a modeling framework. The models detailed in the next
section explicitly addressed the issue of fortification in networked systems.

4.3.1. Expected Cost In this section, we present the reliable network fortification prob-
lem (RNFP), which can be seen as the protection counterpart of the RNDP discussed in
Section 3.3.1. The problem is formulated below by using the same notation as in Section 3.3.1
and the fortification variables Zj = 1 if node j is fortified, and Zj = 0 otherwise.

(RNFP) minimize
∑

s∈S

qs

∑

(i,j)∈A

dijYijs (50)

subject to
∑

(j,i)∈A

Yjis −
∑

(i,j)∈A

Yijs = bj ∀j ∈ V \ {u, v}, s∈ S (51)

∑

(j,i)∈A

Yjis ≤ (1− ajs)kj + ajskjZj ∀j ∈ V0, s∈ S (52)

∑

j∈J

Zj = Q (53)

Zj ∈ {0,1} ∀j ∈ V0 (54)
Yijs ≥ 0 ∀(i, j)∈A,s∈ S (55)

The general structure of the RNFP and the meaning of most of its components are as in
the RNDP. A difference worth noticing is that now the capacity constraints (52) maintain
that each fortified node preserves its original capacity in every failure scenario.

The RNFP can be easily modified to handle the problem in which fortification does not
completely prevent node failures but only reduces the impact of disruptions. As an example,
we can assume that a protected node only retains part of its capacity in case of failure
and that the level of capacity which can be secured depends on the amount of protective
resources invested on that node. To model this variation, we denote by fj the fortification
cost incurred to preserve one unit of capacity at node j and by B the total protection
budget available. Also, we define the continuous decision variables Tj as the level of capacity
which is secured at node j (with 0≤ Tj ≤ kj). RNFP can be reformulated by replacing the
capacity constraints (52) and the cardinality constraints (53) with the following two sets of
constraints:

∑

(j,i)∈A

Yjis ≤ (1− ajs)kj + ajsTj ∀j ∈ V0, s∈ S (56)

and

∑

j∈J

fjTj ≤B (57)

4.3.2. Worst-Case Cost The concept of protection against worst-case losses for network
models has been briefly discussed in [14, 74]. The difficulty in addressing this kind of problem
is that their mathematical representation requires building tri-level optimization models,
to represent fortification, interdiction and network flow decisions. Multi-level optimization
problems are not amenable to solution by standard mixed integer programming method-
ologies and no universal algorithm exists for their solutions. To the best of the authors’
knowledge, the first attempt at modeling and solving network problems involving protection
issues was undertaken in [77]. In [77], the authors discuss two different models: in the first
model, optimal fortification strategies are identified to thwart as much as possible the action
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of an opponent who tries to disrupt the supply task from a supply node to a demand node
by disabling or interdicting network linkages. This model is referred to as the shortest path
interdiction problem with fortification (SPIF). In the second model, the aim is to fortify
network components so as to maximize the flow of goods and services which can be routed
through a supply network after a worst-case disruption of some of the network nodes or
linkages. This model is referred to as the maximum flow interdiction problem with fortifi-
cation (MFIF). The two multi-level models incorporate in the lower level the interdiction
models described in [45] and in [103] respectively.

In both models, there is a supply node o and a demand node d. Additionally, in SPIF each
arc (i, j) has a penalty of pij associated with it which represents the cost increase to ship
flow through it if the arc is interdicted. (The complete loss of an arc can be captured in the
model by choosing pij sufficiently large.) In MFIF, each arc has a penalty rij representing
the percentage capacity reduction of the arc deriving from interdiction. (If rij = 100%, then
an interdicted arc (i, j) is completely destroyed.) The remaining notation used by the two
models is the same as in Sections 3.3.1 and 4.3.1

Note that in both models it is assumed that the critical components that can be interdicted
and protected are the network linkages. However, it is easy to prove that problems where
the critical components are the nodes can be reduced to critical arc models by opportunely
augmenting the underlying graph [23]. Hence, we describe the more general case of arc
protection and interdiction.

The three-level SPIF can be formulated as follows:

(SPIF) min
Z∈F

max
S∈D

min
Y

∑

(i,j)∈A

(dij + pijSij)Yij (58)

subject to
∑

(j,i)∈A

Yji −
∑

(i,j)∈A

Yij = bj ∀j ∈ V (59)

Sij ≤ 1−Zij ∀(i, j)∈A (60)
Yij ≥ 0 ∀(i, j)∈A (61)

where F = {Z ∈ {0,1}n|
∑

(i,j)∈A Zij = Q} and D = {S ∈ {0,1}n|
∑

(i,j)∈A Sij = R}. Also, as
in standard shortest path problems, we define bo = 1, bd = −1, and bj = 0 for all the other
nodes j in V . The objective function (58) computes the minimum-cost path after the worst-
case interdiction of R unprotected facilities. This cost includes the penalties associated with
interdicted arcs. Protected arcs cannot be interdicted (60).

The MFIF model can be formulated in a similar way as follows:

(MFIF) max
z∈F

min
s∈D

max
Y ≥0

W

(62)

subject to
∑

(j,i)∈A

Yji −
∑

(i,j)∈A

Yij = W j = o (63)

∑

(j,i)∈A

Yji −
∑

(i,j)∈A

Yij = 0 ∀j ∈ V \ {o, d} (64)

∑

(j,i)∈A

Yji −
∑

(i,j)∈A

Yij =−W j = d (65)

Yij ≤ kij(1− rijSij) ∀(i, j)∈A (66)
(60)− (61)
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In MFIF, the objective (62) is to maximize the total flow W through the network after the
worst-case interdiction of the capacities of R arcs. Capacity reductions due to interdiction
are calculated in (66). Constraints (63)-(65) are standard flow conservation constraints for
maximum-flow problems.

The two three-level programs, SPIF and MFIF, can be reduced to bilevel programs by
taking the dual of the inner network flow problems. Scaparra and Cappanera [77] show
how the resulting bilevel problem can be solved efficiently through an implicit enumeration
scheme that incorporates network optimization techniques. The authors also show that opti-
mal fortification strategies can be identified for relatively large networks (hundreds of nodes
and arcs) in reasonable computational time and that significant efficiency gains (in terms
of path costs or flow capacities) can be achieved even with modest fortification resources.

Model MFIF can be easily modified to handle multiple sources and multiple destinations.
Also, a three-level model can be built along the same lines of SPIF and MFIF for multi-
commodity flow problems. For example, by embedding the interdiction model proposed in
[58], in the three-level framework, it is possible to identify optimal fortification strategies
for maximizing the profit that can be obtained by shipping commodities across a network,
while taking into account worst-case disruptions.

5. Conclusions

In this tutorial we have attempted to illustrate the wide range of strategic planning models
available for desiging supply chain networks under the threat of disruptions. A planner’s
choice of model will depend on a number of factors, including the type of network under
consideration, the status of existing facilities in the network, the firm’s risk preference, and
the resources available for constructing, fortifying, and operating facilities.

We believe that there are several promising avenues for future research in this field. First,
the models we discussed in this tutorial tend to be much more difficult to solve than their
reliable-supply counterparts—most have significantly more decision variables, many have
additional hard constraints, and some have multiple objectives. For these models to be
implemented broadly in practice, better solution methods are required.

The models presented above consider the cost of re-assigning customers or re-routing flow
after a disruption. However, there are other potential repercussions that should be mod-
eled. For example, firms may face costs associated with destroyed inventory, reconstruction
of disrupted facilities, and customer attrition (if the disruption does not affect the firm’s
competitors). In addition, the competitive environment in which a firm operates may signif-
icantly affect the decisions the firm makes with respect to risk mitigation. For many firms,
the key objective may be to ensure that their post-disruption situation is no worse than
that of their competitors. Embedding these objectives in a game theoretic environment is
another important extension.

Finally, most of the existing models for reliable supply chain network design use some
variation of a minimum-cost objective. Such objectives are most applicable for problems
involving the distribution of physical goods, primarily in the private sector. But reliability
is critical in the public sector as well, for the location of emergency services, post-disaster
supplies, and so on. In these cases, cost is less important than proximity, suggesting that
coverage objectives may be warranted. The application of such objectives to reliable facility
location and network design problems will enhance the richness, variety, and applicability
of these models.
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