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XX.1 Introduction 

Recent examples of disruptions in the news suggest a strong geographical dimen-
sion to supply chain disruptions, and to their effects.  For example: 

• The west-coast port lockout in 2002 strangled U.S. retailers’ supply lines 
while east-coast ports were essentially unaffected (Greenhouse 2002) 

• The foot-and-mouth disease scare in the U.K. in 2001 caused the U.S. to 
ban imports of British meat (Marquis and McNeil 2001).   

• The suspension of the license of the Chiron plant in Liverpool, England 
reduced the U.S. supply of the influenza vaccine by nearly 50% during 
the 2004/5 flu season (Pollack 2004). 

• In the U.S. Gulf Coast region in 2005, Hurricane Katrina idled facilities 
situated at all levels of the supply chain, including production (e.g., cof-
fee; Barrionuevo and Deutsch 2005), processing (oil refining; Mouawad 
2005), warehousing (lumber storage; Reuters 2005), transit (banana im-
ports; Barrionuevo and Deutsch 2005), and retail (groceries and home-
repair; Fox 2005, Leonard 2005).   These facilities were located in or 
near New Orleans but were integral parts of global supply chains. 

These examples highlight the need for supply chain design models that account for 
the spatial nature of both supply chains and their operation. 

In this chapter, we present several models for reliable facility location in a sup-
ply chain that is vulnerable to disruptions.  Since facility location decisions are 
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costly to implement and difficult to reverse, these strategic decisions permit very 
little recourse once a disruption occurs, other than re-assignment of customers to 
non-disrupted facilities.  Our goal, therefore, is to choose facility locations proac-
tively so that the system performs well even if disruptions occur.1 

Consider the following example.  Fig. XX.1 depicts the optimal solution to the 
uncapacitated fixed-charge location problem (UFLP) for a 49-node data set con-
sisting of the capitals of the 48 continental U.S. states and Washington, DC.  All 
nodes serve as both potential facility location sites and demand points, with de-
mands proportional to state populations.  This data set is modified from Daskin 
(1995).  The optimal UFLP solution entails a fixed cost of $386,900 per year to 
operate the five opened facilities and a transportation cost of $470,228 per year. 

 

 

Fig. XX.1. UFLP solution for 49-node dataset 

Now suppose that the facility in Sacramento, California becomes unavailable—
say, because of a strike or extended power outage.  In this case, the west-coast 
customers served by that facility must instead be served by facilities in Des 
Moines, Iowa and Austin, Texas (Fig. XX.2), resulting in a transportation cost of 
$1,019,065, an increase of 117% from the baseline solution.   

Table XX.1 lists the “failure costs” (the transportation costs that result after the 
failure of a facility) for each of the five facilities in the optimal solution, as well as 
their assigned demands and the transportation cost when no facilities fail.  Note 
that Sacramento serves only 19% of the total demand but generates the largest 
failure cost because its customers are geographically disparate and the next-closest 

                                                           
1 In this chapter, we use the terms “failure” and “disruption” interchangeably. 
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facility is quite distant.  The Harrisburg facility serves customers that are tightly 
clustered, and good “backup” facilities are fairly close by, but its failure cost is 
still quite large (a 52% increase in transportation cost) because of the volume of 
demand that it serves.  In contrast, Montgomery serves nearly as much demand as 
Sacramento, but because it is centrally located, close to backup facilities, its fail-
ure cost is smaller than that of Sacramento or Harrisburg.  Therefore, the reliabil-
ity of a facility depends on both the demand served by the facility and the distance 
of those demands from other facilities. 

   

 

Fig. XX.2. UFLP solution for 49-node dataset, after failure of facility in Sacramento 

Table XX.1. Failure costs and assigned demands for UFLP solution 

Location % Demand Served Failure Cost % Increase 
Sacramento, CA 19 1,019,065 117 
Harrisburg, PA 29 713,482 52 
Montgomery, AL 17 634,473 35 
Austin, TX 9 593,904 26 
Des Moines, IA 16 546,599 16 
Lansing, MI 12 537,347 14 
Transportation cost w/o failures  470,228 0 

 
A more reliable solution locates facilities in the capitals of Alabama, California, 

Iowa, New York, Ohio, Oregon, Pennsylvania, and Texas.  The maximum failure 
cost occurs when the Austin, TX fails, but this cost is only $476,374, a mere 35 
percent increase over the transportation cost of $352,698 when all 8 facilities are 
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working.  On the other hand, this solution also requires two additional facilities 
and is suboptimal for the UFLP.  This solution is 7 percent more expensive ac-
cording to the classical measure of cost (the UFLP cost) but is less expensive 
when failures are accounted for.   

We argue that this latter measure (accounting for failures) is a more accurate 
measure of cost and that the second solution may be preferable to the first because 
of its superiority in this measure.  Indeed, one of the key aims in this chapter is to 
demonstrate that large improvements in reliability can often be attained with only 
small increases in the classical cost. 

Although we believe strongly that the “correct” objective functions in facility 
location problems should account for failures, we also believe strongly that it is 
important to examine the tradeoff between this objective and the classical ones—
that is, the tradeoff between the cost if no disruptions occur and the cost if disrup-
tions do occur.  This tradeoff allows us to determine how significant a cost in-
crease is required to add reliability to a system.  For example, normal operating 
cost (sum of the fixed plus transportation costs) had to be twice as large as the op-
timal UFLP cost to attain a reasonable level of reliability, the additional cost may 
be unwarranted (unless facility failures are very likely).  If, on the other hand, the 
tradeoff curve is “steep,” then firms do not need huge investments in redundant in-
frastructure to improve the system’s reliability.  We believe that developing such 
tradeoff curves is an important step in convincing firms to change their optimiza-
tion objectives to include disruptions.   

Indeed, we generally find that the tradeoff curve is steep in this way.  One ex-
planation for this fortuitous finding is that, like many combinatorial optimization 
problems, facility location problems tend to have many near-optimal solutions.  
Some of these solutions may, by chance, have desirable properties like reliability.  
If we can find these solutions, we may find that the their attractive properties out-
weigh their slight suboptimality. 

Of course, there are a number of possible ways to formulate objectives that 
consider disruptions.  For example, one might try to minimize the expected failure 
cost (by weighting the failure costs in Table XX.1 by the probability of each facil-
ity’s disruption), minimize the maximum failure cost (among all rows in Table 
XX.1), or find a solution whose cost stays within a given threshold with some 
probability. 

In this chapter, we consider optimization models for the design of reliable facil-
ity location systems under a variety of risk measures and operating strategies, in-
cluding those discussed in the previous paragraph and others.  Our focus is on the 
formulation of these models and the insights that can be gained from comparing 
solutions obtained from different objectives.  We briefly discuss algorithmic tech-
niques for solving some of these models, but generally we refer to other sources 
for such discussions. 

The remainder of this chapter is organized as follows.  We present a brief litera-
ture review in Sect. 2.  In Sect. 3, we introduce a base model that will be used as a 
foundation for the other models to follow.  We discuss two ways to formulate this 
model, as well as a capacitated extension.  In Sect. 4, we formulate several models 
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using a range of risk measures.  We summarize our findings and discuss opportu-
nities for future research on Sect. 5. 

XX.2 Literature Review 

In this section, we present a brief overview of the literature on reliable supply 
chain network design problems.  A more formal review of this body of literature is 
presented by Snyder et al. (2006).  We refer the reader to the textbooks by Daskin 
(1995), Drezner, (1995), or Drezner and Hamacher (2002) for an introduction to 
facility location.  Owen and Daskin (1998), Daskin, Snyder, and Berger (2005), 
and Snyder (2006) all provide reviews of stochastic location models (generally 
considering uncertainty in demand, rather than disruptions to facilities).  See Birge 
and Louveaux (1997) or Higle (2005) for an introduction to general stochastic 
programming techniques. 

Snyder and Daskin (2005) introduce several models, based on classical facility 
location problems, in which facilities may fail with a given probability.  They 
minimize a weighted sum of two objectives, one of which is a classical objective 
(ignoring disruptions) and the other of which is the expected cost after accounting 
for disruptions.  Customers are assigned to several facilities, one of which is the 
“primary” facility that serves it under normal circumstances, one of which serves 
it if the primary facility fails, and so on.  One of their models is discussed below in 
Sect. XX.3.2.  Snyder and Ülker (2005) present a capacitated version of their 
model (Sect. XX.3.1) and Jeon, Snyder, and Shen (2006) present a version that in-
corporates inventory costs into the location decision. 

Berman, Krass, and Menezes (2005a) consider structural properties of a model 
that is less computationally tractable than Snyder and Daskin’s but more general.  
A subsequent paper (Berman, Krass, and Menezes 2005b) assumes that customers 
do not know in advance which facilities are operational and must travel from facil-
ity to facility in search of a working site. 

Church and Scaparra (2005) and Scaparra and Church (2005, 2006) consider 
the fortification, rather than design, of facilities—that is, the network is assumed 
to exist and the firm has resources to prevent disruptions at some of them, thus 
partially fortifying the network.  Their model finds the best facilities to fortify as-
suming that an interdictor will attempt to cause worst-case losses for the firm by 
disrupting a fixed number of the un-fortified facilities.  Similarly, Daskin et al. 
(2005) allow the firm to choose whether each facility opened is reliable or unreli-
able; reliable facilities come at a higher cost.  (See Sect. XX.4.2 below). 

Reliable facility location models are related to network reliability theory 
(Coburn 1987, Shier 1991, Shooman 2002), which attempts to calculate or maxi-
mize the probability that a network remains connected after random link failures.  
It is also related to the literature on facility location with congestion, in which fa-
cilities are sometimes unavailable due to excess demand (rather than to facility 
disruptions).  (See Berman and LeBlanc (1984), Berman et al. (1985), Daskin 
(1982, 1983), Larson (1974), ReVelle and Hogan (1989).) 
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XX.3 Base Model 

In this section, we present a base model that will be used as a foundation for most 
of the models to come.  We formulate this base model in two ways.  The first 
method uses scenarios to represent uncertain events and resembles the formulation 
of other stochastic facility location problems.  This formulation is quite flexible 
and can be used to model the variations discussed throughout this chapter.  How-
ever, the number of scenarios may be exponentially large: If there are N facilities 
and each can fail independently, there are 2N failure scenarios.  This type of for-
mulation was used previously for a capacitated facility location problems with dis-
ruptions (Snyder and Ülker 2005).  We present an uncapacitated version first, and 
then the capacitated version. 

The second method captures the uncertain events implicitly, without explicit 
enumeration of all failure scenarios, and can be solved more efficiently than the 
scenario-based formulation.  Unfortunately, it requires a restrictive assumption 
(that all facilities have the same probability of disruption) and cannot be extended 
with the same flexibility as the scenario-based formulation.  This formulation was 
first introduced by Snyder and Daskin (2005a). 

All of our models are based on the uncapacitated fixed-charge location problem 
(UFLP; Balinski 1965, Daskin 1995).  We are given a set I of customer locations, 
each of which has an annual demand hi for a single product.  In addition, we have 
a set J of potential facility sites, each with an annual fixed operating cost fj.  If we 
choose to open facility j, then fj is incurred at all times, regardless of whether the 
facility is operational.  The cost to transport one unit of demand from facility j to 
customer i is denoted dij.   

In the classical UFLP, there are two sets of decision variables, location vari-
ables and assignment variables.  The location variables are denoted by Xj, which 
equals 1 if we open a facility at site j.  The formulation of the assignment variables 
is different for different models below; we defer further discussion until we for-
mulate those models. 

Associated with each customer is a per-unit penalty cost θj that represents the 
cost of not serving the customer.  This cost is incurred if all open facilities have 
failed, or if the facilities close to i (with respect to the transportation cost dij) have 
failed so that it is cheaper to pay the penalty than to serve the customer.  θj may 
represent a lost-sales cost, or the cost to pay a competitor to serve the customer 
temporarily.  Rather than modeling this cost explicitly, we add a dummy “emer-
gency facility,” denoted u, to the set J.  Facility u is always open, has no fixed 
cost, and has a transportation cost of θj to customer i—that is, Xu = 1, fu = 0, and 
diu = θj for all i.  Moreover, facility u can never fail.  Henceforth, we assume that 
the facility set J has been augmented in this way, and we ignore the penalty cost 
θj. 
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XX.3.1 Scenario-Based Formulation 

Model 

Let S be a set of scenarios, each of which specifies the failure state of all facilities 
in J.  In particular, let As be the set of facilities that fails in scenario s.  For conven-
ience, we also define ajs = 1 if facility j fails in scenario s and 0 otherwise.  Sce-
nario s occurs with probability qs.  These scenarios may have been identified a 

priori by managers as likely possibilities that are worth planning against.  Alter-
nately, they may represent all possible combinations of facility failures.  For ex-
ample, if each facility j fails with probability pj and failures are independent, then 
scenario s occurs with probability 

∏∏
∈∈

−=
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AJj

j
Aj

js
ppq

\
)1( . (1)

We can modify these probabilities accordingly if failures are dependent.  (Fail-
ures may be dependent because of geographic proximity, supplier commonality, 
etc.)  To model the emergency facility, we require aus = 0 for all s, or, equiva-
lently, qs = 0 if aus = 1. 

The scenario probability qs is interpreted as the long-run fraction of time that 
the precise set of facilities As is disrupted.  Put another way, the fraction of time in 

which facility j is disrupted is given by ∑ ∈∈
=

sAjSs ss qp
:

.  In some cases, the qs 

may be estimated from historical data, while in others it must be estimated subjec-
tively.  Our models are most easily interpreted as infinite-horizon models in which 
the facilities in As are disrupted for qs fraction of the time.  However, if the mod-
eler has in mind a particular finite time horizon T, then qs may be used to capture 
probabilistic information about the timing of the disruptions.   

For example, suppose scenario s represents the situation in which exactly one 
facility, j, fails.  Further, suppose that facility j will fail with probability 0.1, and if 
it does, it will fail in all periods from 1 through 5 with probability 0.3 and in all 
periods from 3 through T with probability 0.7.  (Note that this means that if j fails 
at all, it will surely be non-operational during periods 3 through 5.)  Then qs is 
given by 

.
)]2(7.053.0[1.009.0

T

T
qs

−×+××+×
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For simplicity, we assume that scenarios specify only facility failures.  How-
ever, it is simple to extend this formulation so that demands and transportation 
costs are also scenario dependent. 

In each scenario, we need to assign customers to facilities.  The decision vari-
able for these doing so is given by Yijs, which equals the fraction of customer i’s 
demand that is assigned to facility j in scenario s.  As in the classical UFLP, single 
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sourcing is optimal; that is, there exists an optimal solution for which Yijs ∈ {0,1} 
for all i, j, and s. 

We formulate our base model with the objective of minimizing the expected 
cost, though in future sections we will consider alternate risk measures.  The sce-
nario-based formulation of the reliability fixed-charge location problem (RFLP1) 
is formulated as follows: 

(RFLP1)   minimize ∑∑∑∑
∈ ∈ ∈∈

+
Ss Ii Jj

ijsijis

Jj

jj YdhqXf  (3)

subject to 1=∑
∈Jj

ijsY      SsIi ∈∈∀ ,  (4)

jjsijs XaY )1( −≤      SsJjIi ∈∈∈∀ ,,  (5)

}1,0{∈jX      Jj ∈∀  (6)

0≥ijsY      SsJjIi ∈∈∈∀ ,,  (7)

The objective function (3) minimizes the fixed cost plus the expected transpor-
tation cost across all scenarios.  Constraints (4) require each customer to be as-
signed to some facility in every scenario.  Constraints (5) prohibit a customer from 
being assigned to a facility that has not been opened, or to a facility that has failed 
in a given scenario.  Constraints (6) require the location variables to be binary, and 
constraints (7) require the assignment variables to be non-negative (though, as 
stated above, an optimal solution always exists in which they are binary).  Note 
that, although we do not explicitly require Xu = 1, any optimal solution will open 
the emergency facility if it is needed for some scenario since it has no fixed cost. 

Note that, if there is a single scenario, and no facilities fail in this scenario, this 
model reduces to the classical UFLP.  Since the UFLP is NP-hard (Garey and 
Johnson 1979), so is the RFLP.   

(RFLP1) can be solved using standard IP solvers like CPLEX.  However, if the 
scenarios represent all possible combinations of failures, then S is exponentially 
large.  In this case, sampling techniques such as sample average approximation 
(SAA; ; Kleywegt, Shapiro and Homem-de-Mello 2001; Linderoth, Shapiro, and 
Wright 2002) may be used to solve the problem with a reduced set of scenarios 
and obtain statistical bounds on the quality of the solutions. 

Capacitated Model 

The formulation above assumes that facilities have infinite capacity or that they 
can serve any number of demands.  In many cases, this might not be true.  We can 
define k js  to be the capacity of a facility at candidate site j in scenario s.  This 
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notation and the following formulation, allow a facility to incur impaired capacity 
in a scenario without completely failing.  We let the capacity of the dummy facil-
ity u be ∞=kus  for all scenarios s, indicating that this facility can accommodate 

all demands if necessary in each scenario.  With this notation, we replace con-
straint (5) by its more traditional version  

XY jijs ≤      SsJjIi ∈∈∈∀ ,,  (8)

In addition, we add the following capacity constraint, where the demand placed on 
a facility’s capacity is measured in terms of the demand units hi  

XkYh jjs
Ii

ijsi ≤∑
∈

    SsJj ∈∈∀ ,  (9)

This formulation, denoted CRFLP, was first suggested by Snyder and Ülker 
(2005). 

Two observations are worth making about the CRFLP.  First, constraints (8) are 
implied by (9) and are therefore not technically needed.  However, in most cases, 
the addition of (8) will strengthen any relaxation of the model.  Hence, we suggest 
including constraints (8) explicitly in any model or algorithm.  Second, constraints 
(9) allow demands at a node to be split between multiple facilities since the as-
signment variables can be fractional by constraints (7).  However, the extent of 
multiple sourcing or fractional assignment of demands to facilities is bounded in 
each scenario.  In particular, the maximum number of demand nodes that can be 
fractionally assigned to facilities is less than or equal to 1−∑

∈Jj
jX  in each sce-

nario.  Multiple sourcing may not be overly problematic, if this number is small 

relative to the total number of demand nodes, I .  In such cases, an approximate 

solution to the single sourcing problem can often be found for each scenario using 
the approach suggested by Daskin and Jones (1993).  When single sourcing is re-
quired and strict optimality is also needed, constraints (7) should be replaced by 
the obvious integrality constraints 

{ }1,0∈Y ijs      SsJjIi ∈∈∈∀ ,,  (10)

The imposition of these constraints is likely to increase the difficulty associated 
with solving the problem considerably. 

XX.3.2 Implicit Formulation 

Model 

We next present a formulation of the RFLP in which the random disruptions are 
modeled implicitly, rather than using explicit scenarios.  This formulation is based 



10      Lawrence V. Snyder, Mark S. Daskin 

on the model presented by Snyder and Daskin (2005a).  It requires us to make the 
(rather strong) assumption that the facilities are divided into two sets; the facilities 
in the first set never fail, while all of the facilities in the second set fail independ-
ently with the same probability, q.  The first set is called NF (for “non-failable”), 
while the second is called F (for “failable”).  Since the emergency facility never 
fails, we have u ∈ NF.  Note that F and NF constitute a partition of J. 

In the implicit formulation of the RFLP, denoted (RFLP2), assignments are 
made not based on scenarios but based on “assignment levels.”  In particular, an 
assignment of customer i to facility j is said to be a “level-r assignment” if there 
are r open, failable facilities that are closer to i than j is.  If r = 0, then j is i’s “pri-
mary” facility—the facility that serves it under normal circumstances—while if 
r>0, j is a “backup” facility.  A given customer must be assigned to some facility 
at every level r from 0 to the number of open facilities, unless it is assigned to 
some non-failable facility at level s < r.  We define Yijr = 1 if customer i is as-
signed to facility j as a level-r assignment. 

Since each facility fails with the same probability, we can compute the prob-
ability that customer i is served by facility j knowing only the level of i’s assign-
ment to j—that is, knowing how many facilities are closer to i but not knowing 
which facilities those are.  This allows a compact formulation of the expected cost.  
In particular, (RFLP2) is formulated as follows: 

(RFLP2)   minimize ∑∑ ∑∑∑
∈

−

= ∈∈∈
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0≥ijrY      1||,,0,, −=∈∈∀ JrJjIi K  (16)

The objective function (11) minimizes the fixed cost plus the expected trans-
portation cost.  The transportation cost term reflects the fact that if customer i is 
assigned to facility j at level r, then it will be served by j if the r closer facilities 
fail (which happens with probability qr) and if j itself does not fail (which happens 
with probability q if j is failable and with probability 1 if j is non-failable).  Con-
straints (12) stipulate that each customer must be assigned to some facility at each 
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level r, unless the facility is assigned to a non-failable facility at level s < r.  (By 

convention, we take 0
1

0
=∑

−

=

r

s ijsY  if r = 0.)  Constraints (13) prevent an assign-

ment to a facility that has not been opened, while constraints (14) prevent a cus-
tomer from being assigned to a given facility at more than one level.  Constraints 
(15) and (16) require integrality and non-negativity of the location and assignment 
variables, respectively.  As in the uncapacitated version of (RFLP1), this formula-
tion has an optimal solution in which the assignment variables are binary even 
though we only require them to be non-negative.  Also as in (RFLP1), there exists 
an optimal facility in which the emergency facility u is open even though we do 
not explicitly require it.  Although assignment levels cannot exceed the number of 
open facilities, which is not known a priori, it is safe to extend the index r  to |J|–1 
in the formulation since each customer is assigned to some non-failable facility 
(possibly u) at some level less than |J|–1. 

Once the location variables are fixed, it is optimal to assign a customer to its 
closest open facility at level 0, its second-closest at level 1, and so on, until it is 
assigned to some non-failable facility (possibly u). 

Snyder and Daskin (2005a) propose a Lagrangian relaxation algorithm to solve 
(RFLP2).  They relax constraints (12) to obtain a subproblem that can be solved 
efficiently to obtain a lower bound for a fixed set of Lagrange multipliers.  Upper 
bounds are obtained by converting the X vector from the lower-bound solution 
into a feasible solution by assigning customers as described in the previous para-
graph.  The Lagrange multipliers are updated using subgradient optimization, and 
the algorithm can be embedded into a branch-and-bound procedure if the bounds 
produced are not sufficiently tight. 

Tradeoff Curve 

As discussed above, it is interesting to examine the tradeoff between the UFLP ob-
jective and the objective that accounts for failures.  Snyder and Daskin (2005a) 
construct this tradeoff by formulating a multi-objective programming problem 
with two objectives based on (RFLP2): 
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Objective w1 is the classical UFLP objective, while objective w2 is the objective 
function from (RFLP2) without the fixed-cost term.  We replace the objective 
function in (RFLP2) with a weighted sum of these two objectives: 

minimize   αw1 + (1–α)w2, (19)
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where 0 ≤ α ≤ 1.  By solving the problem for varying values of α using the 
weighting method of multi-objective programming (Cohon 1978), we can generate 
a tradeoff curve consisting entirely of non-dominated solutions.  (A solution is 
non-dominated if every other solution is worse than it in at least one of the two ob-
jectives.) 

The resulting tradeoff curves for the 49-node data set described earlier are de-
picted in Fig. XX.3 for q = 0.01, 0.05, and 0.10.  All facilities are assumed to be 
failable.  The UFLP cost (w1) is plotted on the x-axis and the failure cost (w2) is 
plotted on the y-axis.  Each point on a curve represents a different value of α and a 
different solution. 

The solution that is optimal for the classical UFLP (found by solving (RFLP2) 
with α = 1) is the left-most point on each curve.  These points are equal on the 
horizontal axis (since they represent the same solution and hence have the same 
UFLP cost) but unequal on the vertical axis since they have different failure prob-
abilities and hence different expected failure costs.   

Fig. XX.3 suggests that as q decreases, the tradeoff curve shifts.  That is, if the 
firm can somehow reduce the failure probability at its facilities, it can attain a 
higher level of reliability with the same UFLP cost—or, equivalently, it can attain 
the same level of reliability with a lower UFLP cost. 

The steepness of the left part of each curve suggests that there are solutions that 
are much better than the UFLP solution in terms of reliability but not much worse 
in terms of cost.  For example, consider the bottom curve, corresponding to q = 
0.01.  The third point from the left of this curve represents a solution that is 25% 
better than the UFLP solution in the reliability objective (w2) but only 7% worse in 
the UFLP objective (w1).  Similarly, the fifth point is 38% better in w2 but only 
15% worse in w1.  These solutions are depicted in Figs. XX.4 and XX.5. 

The number of facilities open in each solution tends to increase as we move 
rightwards in the curve, since more reliable solutions tend to have more facilities 
open.  The right-most portion of the curve is quite flat, but this portion of the 
curve is not of much interest because nearly all of the facilities are open in these 
solutions; they are very reliable but excessively expensive. 

We find tradeoff curves with this shape for a wide range of models and data 
sets, suggesting that large improvements in reliability can often be attained with 
only small increases in cost. 
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Fig. XX.3. Tradeoff curve for 49-node dataset 

 

Fig. XX.4. Solution corresponding to third point on q = 0.01 tradeoff curve in Fig. 3. 
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Fig. XX.5. Solution corresponding to fifth point on q = 0.01 tradeoff curve in Fig. XX.3. 

XX.4 Alternate Operating Characteristics and Risk 
Measures 

XX.4.1 Introduction 

In this section, we outline a number of extensions to the base models defined 
above.  We begin with a variant of the models that allows us to locate two differ-
ent types of facilities:  facilities that are perfectly reliable, or completely hardened 
against any and all attacks, and facilities that are subject to failure or that are unre-
liable in some way.  The model will determine how many of each type of facility 
to locate and where they should be.  In the second portion of this section, we ex-
plore alternative risk measures that also extend the formulations identified above. 

XX.4.2 Reliable and Unreliable Facilities 

In recent years, much attention has focused on the need to harden facilities against 
attacks.  The attacks can be intentional, as in the case of terrorist attacks, or ran-
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dom or unintentional, as in the case of natural disasters.  Scaparra and Church 
(2005a,b) outline defender/interdictor extensions to the traditional P-median prob-
lem in which P facilities already exist in a network.  A defender can fortify q of 
these facilities against an attack by an interdictor against r of the remaining unde-
fended facilities.  The objective of the interdictor is to maximize the demand-
weighted total distance with demands assigned to the closest non-interdicted fa-
cilities, while the defender attempts to minimize this worst-case cost by defending 
a subset of the facilities.  Brown et al. (2005) provide an excellent tutorial on this 
class of defender/attacker problems. 

We adopt a somewhat different approach, first suggested by Daskin (2005) and 
Daskin et al. (2006).  First, we assume that facilities fail randomly.  As such, we 
do not need to model the behavior of an interdictor whose objective is to maxi-
mize the damage that he or she inflicts on a network.  Second, we do not assume 
that any facilities exist in the network; rather we formulate the model below based 
on de novo planning with no pre-existing facilities.  The model can readily be 
adapted to the case in which some facilities already exist, through appropriate 
changes in the fixed costs. 

One of two types of facilities can be established at each candidate site j.  A reli-

able facility will never fail.  Such a facility costs f
R
j

 at candidate site j.  Alterna-

tively, we may elect to construct an unreliable facility which can fail with prob-

ability q but which costs f
U
j

.  Clearly we require ff
R
j

U
j

<  for there to be an 

incentive to locate any unreliable facilities.  We define location decision variables 

X
R
j  (and X

U
j ) to be 1 if we locate a reliable (or unreliable) facility at candidate 

site j and 0 otherwise.   
Similarly, every demand node i must be assigned to both a primary facility and 

a backup facility.  The primary assignment will be used if the closest facility has 
not failed.  The backup assignment will be to the closest reliable facility and will 
be used when the primary facility has failed.  Thus, if the primary facility to which 
a demand node is assigned has failed, the demands at that node are served by the 
nearest reliable facility, not the nearest facility which has not failed.  In this way, 
the model is a simplification of the base model outlined above.  This assignment 
scheme is chosen primarily for computational reasons.  However, during a disrup-
tion, real-time information is often limited, and it may be quite reasonable to as-
sume that firms re-assign customers to their nearest reliable facility rather than try-
ing to ascertain whether a closer unreliable facility is operational.  We use 

decision variables Y
P
ij  and Y

B
ij  for the primary and backup assignments, respec-

tively. 
With this notation, the model becomes 

(RFLP3)   minimize 

( ) ∑ ∑∑ ∑∑∑
∈ ∈∈ ∈∈∈

+−++
Ii Jj

B
ijiji

Ii Jj

P
ijiji

Jj

R
j

R
j

Jj

U
j

U
j YdhYdhXfXf qq1  

(20)
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subject to 1=∑
∈Jj

P
ijY       Ii ∈∀  (21)

1=∑
∈Jj

B
ijY      Ii ∈∀  (22)

XXY
R
j

U
j

P
ij +≤      JjIi ∈∈∀ ,  (23)

XY
R
j

B
ij ≤      JjIi ∈∈∀ ,  (24)

1≤+ XX
U
j

R
j      Jj ∈∀  (25)

1≥∑
∈Jj

R
jX  (26)

{ }1,0∈X
R
j      Jj ∈∀  (27)

{ }1,0∈X
U
j      Jj ∈∀  (28)

0≥Y
P
ij      JjIi ∈∈∀ ,  (29)

0≥Y
B
ij      JjIi ∈∈∀ ,  (30)

The objective function (20) minimizes the total fixed cost for reliable and unre-
liable facilities as well as the transportation cost for primary and backup assign-
ments.  Primary assignments occur with probability 1–q for each demand node 
and backup assignments occur with probability q.  If a customer’s primary facility 
is reliable, then its backup assignment will be to the same facility, and the objec-
tive function computes the transportation cost to this facility with probability 1.  
Constraints (21) and (22) require that each demand node be assigned to a primary 
and backup facility.  Constraints (23) state that the primary assignment can only 
be made to an open (reliable or unreliable) facility, while constraints (24) state that 
the backup assignment can only be to a reliable facility.  Constraints (25) state that 
at any candidate site either a reliable or an unreliable facility can be located, but 
not both.  Constraint (26) requires the model to locate at least one reliable facility.  
Constraints (27) and (28) are standard integrality constraints for the location vari-
ables, while constraints (29) and (30) are non-negativity constraints for the pri-
mary and backup assignment variables respectively. 
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Constraints (25) and (26) are not strictly needed.  In the formulation as stated, 
there is no incentive to locate both a reliable and an unreliable facility at any can-
didate site; hence constraints (25) are not needed.  Similarly, constraints (26) are 
implied by the need to provide a backup assignment to a reliable facility for every 
demand node (constraints 22 and 24).  However, in many solution algorithms 
which relax one or more of the remaining constraints, these constraints are valu-
able additions as they tighten the relaxed formulation.  For example, Daskin 
(2005) and Daskin et al. (2006) outline an extension of this model that allows the 
backup distance or cost to differ from the primary distance or cost even for the 
same demand node/facility pair.  This extension requires the incorporation of addi-
tional decision variables, additional terms in the objective function and additional 
constraints to correct for the case in which a demand node is assigned to a reliable 
facility as both its primary and backup facility.  (This correction is not needed 
when the primary and backup distances for each demand node/facility pair are the 
same as is the case in the formulation above.)  They outline a Lagrangian solution 
approach that relaxes constraints (21) and (22) above.  Constraints (25) and (26) 
significantly strengthen the bounds that result from this relaxation. 

Table XX.2 shows the results associated with applying the model to the 49-
node dataset.  In these results, we increased the demand by a factor of 3 compared 
to the earlier results so that more facilities would be justified in the base case 
when no facilities are subject to failure.  (All costs are in units of $1000.)  For all 
of these runs, the cost of a reliable facility was set to twice the cost of an unreli-
able facility at each candidate site. 

Table XX.2. Results from RFLP3 Model for the 49-node dataset 

Failure 
Prob 

#  
Reliable 

#  
Unrel. 

Total Cost 
(x$1,000) 

Reliable Sites Unreliable Sites 

0.000 0 13 1,544  CA CO FL IA IL MI MS NY 
OH OR PA TX VA 

0.010 1 12 1,643 PA CA CO FL IA IL MI MS NY 
OH OR TX VA 

0.030 2 11 1,742 IA PA CA CO FL IL MI MS NY OH 
OR TX VA 

0.050 3 10 1,805 MS OR PA CA CO FL IA IL MI NY OH 
TX VA 

0.100 3 9 1,910 IL OR PA CA CO FL IA MI MS NY OH 
TX 

0.150 4 7 1,992 IL MS OR PA CA FL IA MI NY OH TX 
0.200 4 6 2,046 CA IL MS PA FL IA NY OH OR TX 
0.250 5 4 2,079 AL CA IL PA TX IA NY OH OR 
0.300 5 4 2,107 AL CA IL PA TX IA NY OH OR 
0.350 5 4 2,135 AL CA IL PA TX IA NY OH OR 
0.360 6 3 2,139 AL CA IA OH PA TX IL NY OR 
0.400 6 2 2,153 AL CA IA OH PA TX NY OR 
0.450 6 2 2,168 AL CA IA OH PA TX NY OR 
0.475 6 1 2,174 AL CA IA OH PA TX NY 
0.500 6 0 2,177 AL CA IA OH PA TX  
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Fig. XX.6 shows the solution when the facility failure probability is 0.05.  Fig. 
XX.7 shows the results for a failure probability of 0.15, while Fig. XX.8 shows 
the results for a failure probability of 0.25.  In all figures, the unreliable sites are 
shown in italics.  Some demand nodes are shown with one assignment while oth-
ers – those whose primary assignment is to an unreliable facility (dashed lines) – 
are shown with two assignments. 

Several observations are worth noting.  First, as the probability of a facility fail-
ing increases, the number of reliable facilities increases, the number of unreliable 
facilities decreases and the total cost increases.  Second, for moderate values of 
the failure probability (under 0.05 in this case), the total number of sites does not 
change from the optimal number found when facilities are not subject to failure, 
but some facilities are hardened to insure that they do not fail.  For larger failure 
probabilities, the total number of facilities decreases.  Third, as the failure prob-
ability increases, some facilities will be eliminated completely (e.g., the facility at 
Richmond, VA which is eliminated once the failure probability gets to 0.10).  
Some facilities will be converted to reliable facilities as the failure probability in-
creases (e.g., the facility at Harrisburg, PA, which becomes a reliable facility and 
remains a reliable facility for any failure probability).  Other facilities change from 
unreliable, to reliable, back to unreliable and then back to reliable facilities again 
as the failure probability increases (e.g., the facility in Des Moines, IA, or the fa-
cility in Springfield, IL, which goes from an unreliable site, to a reliable facility 
and then back to an unreliable site).  Finally, some facilities are introduced into the 
solution as the probability of failure increases (e.g., the facility at Montgomery, 
AL which enters the solution when the facility failure probability reaches 0.25). 

 

 

Fig. XX.6.  Optimal locations of 3 reliable sites and 10 unreliable sites when failure prob-
ability is 0.05 
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In addition, as the failure probability increases, the expenditure on reliable fa-
cilities increases, while the contribution of the fixed facility costs for unreliable 
facilities decreases.  Also, as the failure probability increases, the primary trans-
portation cost increases (as there tend to be fewer facilities overall) but the backup 
transportation cost decreases (since the number of reliable sites increases with the 
failure probability).  Finally, for failure probabilities exceeding 0.5 in this case, it 
is not cost-effective to utilize unreliable sites.  In fact, an extension of a simple 
analytic model to incorporate both reliable and unreliable facilities indicates that, 
under the idealized assumptions of the analytic model (including equal reliable-

facility costs of f
R  across facilities, and similarly for f

U , and a uniform distri-

bution of demand), unreliable facilities are not employed when the failure prob-

ability exceeds fff
RUR






 −  (Daskin, 2005; Daskin et al., 2006).  While the 

discrete model whose results are shown above does not require all facility sites to 
cost the same amount of money, at any candidate site a reliable facility will be 
twice the cost of an unreliable facility.  Thus, loosely speaking, the ratio above 
will be 0.5 even for the discrete results.  As shown in Tab. 1, when the failure 
probability exceeds 0.5, no unreliable facilities are used. 

 

Fig. XX.7.  Optimal locations of 4 reliable sites and 7 unreliable sites when failure prob-
ability is 0.15 
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Fig. XX.8.  Optimal locations of 5 reliable sites and 4 unreliable sites when failure prob-
ability is 0.25 

 

XX.4.3 Other Risk Measures 

The risk measures discussed so far focus on the average performance of the sys-
tem when facilities fail.  Such models assume that decision makers are risk neu-
tral.  In many contexts, decision makers are risk averse: they are concerned not 
only with the expected performance, but with the potential deviation from it.  This 
may be particularly true when managers are faced with the prospects of losing fa-
cilities to natural or man-made disasters.  Therefore, in this sub-section, we briefly 
formulate a number of extensions to the base model that allow decision makers to 
explore alternate risk measures.  In general, these risk measures have all appeared 
in the literature on facility location under demand uncertainty but have not previ-
ously been used for disruption problems. 

 

Minimax Cost Model 

The first extension to the base model entails minimizing the worst-case cost in the 
event of a failure.  To do so, we define a new decision variable, U, which is equal 
to the worst-case fixed plus transportation cost over all scenarios.  Objective (31) 
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below minimizes this cost subject to constraint (32), which defines the cost in 
terms of the total fixed plus demand-weighted transportation cost in each scenario.   

minimize U (31)

subject to   UYdhXf

Ii Jj
ijsiji

Jj
jj

≤+ ∑ ∑∑
∈ ∈∈

   Ss ∈∀  

(4) – (7) 

(32)

This formulation has the advantage of not requiring scenario probabilities as in-
puts.  However, while the expected cost measure defined in (3) is risk neutral, the 
minimax objective of (31) is extremely risk averse.  In fact, the location plan is 
frequently defined by one (possibly low-probability) scenario, as is often the case 
in minimax objectives (including the P-center model, for example).  Such a strong 
aversion to the worst case often leads to solutions that are quite costly in the non-
worst cases.  As such, the minimax approach, which places undue emphasis on the 
worst case, is difficult to justify, just as is the expected value objective of (3), 
which allows very bad worst-case results.  Additional approaches are outlined be-
low. 

Mean-Variance 

One of the first and most famous objectives considered for optimization under un-
certainty is the mean-variance approach.  In this model, we minimize a weighted 
sum of mean cost and the variance of the cost.  To define this model, let zs(Y) be 
the transportation cost in scenario s if the allocation variables are given by Y.  
Then the mean-variance model may be formulated as follows 

minimize   ( )



















−++ ∑∑∑∑

∈∈∈∈

2

2
)()()(

Ss

ss

Ss

ss

Ss

ss

Jj

jj YzqYzqYzqXf λ  

subject to   (4)-(7) 

(33)

where λ  is a weight that is placed on the variance of the transportation costs.  The 
variance places a higher implicit penalty on transportation costs that are signifi-
cantly larger (and smaller) than the average. 

The key problem with this model is that the objective function is highly non-
linear.  Also, equally penalizing transportation costs that are lower than the aver-
age and higher than the average seems somewhat illogical as decision makers are 
most likely to be concerned with costs that exceed the mean. 

Bounding the Cost 

One approach to balancing the average cost and the worst-case cost is to mini-
mize one cost while bounding the other.  For example, we can minimize the ex-
pected cost over all scenarios – objective (3) – while bounding the cost in each 
scenario.  This formulation is shown below. 
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minimize   ∑ ∑ ∑∑
∈ ∈ ∈∈

+
Ss Ii Jj

ijsijis
Jj

jj YdhqXf  (3)

subject to   rYdhXf

Ii Jj
ijsiji

Jj
jj

≤+ ∑ ∑∑
∈ ∈∈

   Ss ∈∀  

(4) – (7) 

(34)

Constraint (34) limits the cost in each scenario, including the fixed facility costs 
which are common across all scenarios, to a value r.  Alternatively, we can simply 
minimize the uncapacitated fixed charge location problem (UFLP) objective sub-
ject to (34) as well as (4)-(7).  The UFLP objective is simply: 

minimize   ∑ ∑∑
∈ ∈∈

+
Ii Jj

ijiji
Jj

jj YdhXf  (35)

This is equivalent to minimizing the cost in the scenario in which no facilities fail 
subject to a constraint on the costs incurred when facilities do fail.  This approach 
was proposed by Snyder (2003). 

One problem with this approach is that the costs incurred when facilities fail 
may differ significantly from one scenario to another.  Thus, it may make more 
sense to constrain the costs in scenario s relative to the best we could do in sce-
nario s, had we known that scenario s would occur, rather than relative to some 
absolute limit r.  To do so, we define zs  to be the optimal objective function 

value in scenario s.  We can then modify (34) to constrain the total cost in scenario 
s to be (1+r) times the optimal cost in scenario s as shown in constraint (36). 

( )z s
Ii Jj

ijsiji
Jj

jj
rYdhXf +≤+ ∑ ∑∑

∈ ∈∈

1    Ss ∈∀  (36)

Let us define 
s

Ii Jj
ijsiji

Jj
jjs

zYdhXfR −+= ∑ ∑∑
∈ ∈∈

.  Rs is the absolute re-

gret in scenario s: the absolute difference in total cost between the best we can do 
in scenario s and the best we could have done in scenario s had we known that 
scenario s would occur.  Similarly, Rs / zs is the relative regret, which represents 
the percentage difference.   

Effectively, (36) constrains the relative regret in each scenario to be no more 
than r.  This approach is similar to the “stochastic p-robust optimization” approach 
introduced by Snyder and Daskin (2005b), which minimizes the expected cost in a 
facility location problem with uncertain demands and costs, subject to a constraint 
requiring the regret in any scenario to be no more than p.  Snyder and Daskin ar-
gue that stochastic p-robustness combines the attractive elements of the min-
expected-cost and minimax-cost approaches by optimizing the expected perform-
ance while ensuring adequate performance in every scenario.  They show that 
large improvements in robustness (i.e., decreases in worst-case cost) are possible 
with only small increases in expected cost. 
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A similar phenomenon is evident in the results of the model in which we mini-
mize the expected cost (3) subject to (36) and (4)–(7).  Table XX.4 reports the so-
lutions of this model for various values of r for the 49-node data set.  For compu-
tational reasons, these tests only include scenarios in which zero or one facilities 
fail.  The first column lists r, the maximum allowable relative regret.  The second 
column gives the expected cost of the resulting solution (×1000), while the third 
gives the maximum relative regret of this solution (which must be no greater than 
r).  The fourth column lists the states in which facilities are opened in the solution.   

Notice that substantial reductions in regret are possible with only minor in-
creases in expected cost.  For example, the second solution has a maximum regret 
that is 29% smaller than the baseline solution (r = ∞) but has only 4% greater ex-
pected cost.  Similarly, the last solution (r = 0.25) has 68% smaller maximum re-
gret but only 6% greater expected cost. 

The last row of Table XX.4 corresponds to the optimal solution for the scenario 
in which the PA facility fails.  This scenario is the one that attains the maximum 
regret for all values of r except ∞.  As r decreases, this is the critical scenario, and 
the solution adjusts to reduce the regret in it.  When r = 0.25 (corresponding to 
25% regret), the solution is quite similar to the optimal solution for that scenario: 
the two solutions have four facilities in common, two neighboring pairs of facili-
ties (OH / MI and PA / NJ), and only one outlier facility.  If we reduce r below 
0.209, a second scenario becomes critical, and it is impossible to reduce the regret 
of both scenarios simultaneously; therefore, the problem becomes infeasible. 

This last point highlights one of the main difficulties with models that bound 
the cost in each scenario.  In the other models we have discussed, it is trivial to 
find a feasible solution.  In contrast, as r decreases, it can become quite difficult to 
find a solution that is feasible with respect to (36).  In fact, Snyder and Daskin 
(2005b) prove that, if the number of scenarios is at least 2, then determining 
whether a given problem instance is feasible is NP-complete.  Their result applies 
to a problem with uncertain demands and costs, but a similar result can be proven 
for problems with facility failures. 

Table XX.4. Solutions to problems with bounded costs 

R Exp. Cost 
(×1000) 

Max Regret Locations 

∞ 737 0.649 AL IL NV PA TX 
0.5 768 0.462 AL CA IL OR PA TX 
0.4 774 0.341 AL CA IN OR PA TX 
0.3 776 0.274 AL CA IA MI OR PA TX 
0.25 782 0.209 AL CA IA OH OR PA TX 
[PA fails] — — AL CA IA MI NJ TX 

 

αααα-Reliability 

In many personal, private sector and public-sector decision contexts, it makes 
sense to plan not just for the average or expected-value case, or for the worst case, 
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but rather for some eventuality in between these extremes.  For example, the ex-
pected outcome of the more than 2 million cosmetic surgical procedures per-
formed in the U.S. in 2004 (ASAPS 2004) was an improvement in the patient’s 
appearance.  The worst-case outcome undoubtedly was death in a small percent-
age of the cases.  While most people who have such elective surgery expect the 
best possible outcome, it is prudent to plan for adverse results as well.  For exam-
ple, it is wise to have an up-to-date will as well as a living will and health care 
proxy before undergoing any surgical procedure.  Similarly, in the design of pub-
lic facilities such as airports, we clearly do not plan just for the average volume, 
but we also do not size airports for the peak demands associated with the Thanks-
giving weekend.  Airport capacity is based on values that are intermediate be-
tween the average and maximum daily demand levels. 

In a similar manner, we can plan against an endogenously determined subset of 
the scenarios whose combined probability is at least α.  One variant of this ap-
proach would minimize the maximum regret over all such scenarios, ignoring the 
regret in the remaining scenarios.  To do this, we define a new variable W s  to be 

1 if scenario s is in the “reliability set” against which we are planning and 0 oth-
erwise.  (Note that the term reliability is used in a different context in this model 
and refers to an endogenously determined set of scenarios against which the model 
is planning.)  We also define R to be the maximum regret over all scenarios in the 
reliability set.  Finally, we let M be a large number, larger than any possible sce-
nario regret.  With this notation, the problem can be formulated as: 

minimize R (39)

subject to   α≥∑
∈Ss

ssWq  (40)

( ) RM WzYdhXf ss
Ii Jj

ijsiji
Jj

jj
≤−−−+ ∑ ∑∑

∈ ∈∈

1    Ss ∈∀  

(4)-(7) 

(41)

The objective function (39) minimizes the maximum regret R over the scenarios in 
the reliability set.  Constraint (40) requires the reliability set over which the mini-
mization is performed to have a probability of at least α.  Constraint (41) defines 
the maximum regret in terms of the scenario-based regrets, but excludes scenarios 
that are not part of the reliability set.  This model was first proposed by Daskin et 
al. (1997), though scenarios in the original model referred to uncertainty in de-
mand rather than in supply. 

One problem with the α-reliable minimax regret model above is that it ignores 
the regret associated with scenarios that are not part of the reliability set.  Chen et 
al. (2005) have proposed the α-reliable mean excess regret model, which, when 
applied to the problems at hand results in the following formulation: 
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minimize ∑
∈−

+
Ss

ssUq
α

ζ
1

1
 

(42)

subject to   ζ−≥ RU ss    Ss ∈∀  (43)

RzYdhXf ss
Ii Jj

ijsiji
Jj

jj
≤−+ ∑ ∑∑

∈ ∈∈

   Ss ∈∀  

(4)-(7) 

(44)

In this model, we can think of ζ  as the regret contribution of every scenario.  A 

fraction of the scenarios (approximately equal to α ) will have regret values that 
exceed this endogenously determined value.  The objective function (42) mini-
mizes the sum of ζ  and the expected regret in excess of this value.  Constraint 

(43) defines the excess regret in scenario s as the amount by which the regret in 
scenario s exceeds the nominal value ζ .  Constraint (44) defines the regret in sce-

nario s in terms of the compromise locations, the scenario-specific demand as-
signments and the optimal objective function for scenario s, zs . 

Although the α-reliable minimax regret and α-reliable mean excess regret mod-
els were originally formulated for problems with demand uncertainty, they can be 
applied equally well to problems with facility failures. 

Chance-Constrained Approach 

Finally, we note that the α-reliable minimax regret model is similar to a chance-
constrained model.  For example, we can minimize the expected cost over all sce-
narios – objective (3) – subject to a constraint that the sum of the probabilities as-
sociated with scenarios in which the cost exceeds some value C target  is less than 

or equal to β , a user-specified value.  Let us define the decision variable T s  to 

be 1 if the cost in scenario s exceeds C target  and 0 otherwise.  A chance-

constrained model can now be formulated as follows: 
 

minimize ∑ ∑ ∑∑
∈ ∈ ∈∈

+
Ss Ii Jj

ijsijis
Jj

jj YdhqXf  (3)

subject to   β≤∑
∈Ss

ssTq  (45)

TCYdhXf s
Ii Jj

ijsiji
Jj

jj
M≤−+ ∑ ∑∑

∈ ∈∈
target    Ss ∈∀  (46)



26      Lawrence V. Snyder, Mark S. Daskin 

(4)-(7) 

The objective minimizes the expected cost over all scenarios.  Constraint (45) 
states that the sum of the probabilities of all scenarios with cost greater than 

C target  must be less than or equal to β .  Constraint (46) links the location and 

allocation variables which define the cost in scenario s to the variables T s .  If the 

scenario-specific cost exceeds C target , meaning that the left-hand side of (46) is 

positive, then T s  must be 1; otherwise T s  may be 0.  Again, M is a sufficiently 

large value so that constraint (46) will not be binding whenever 1=T s . 

XX.5 Conclusions 

Supply chain planners face a significant amount of uncertainty, particularly 
during the strategic planning phase.  Facility location decisions are very expensive 
to change, so planners must take uncertainty into account when choose facility lo-
cations.  In this chapter, we have illustrated the broad range of strategies that deci-
sion makers might take for approaching risk in facility location models with sup-
ply disruptions.  A planner may choose one or more of these approaches based on 
his or her level of risk aversion, the type of disruptions that are of greatest con-
cern, the flexibility of each measure to fine-tune parameters and add side con-
straints, the computational difficulty with which each model can be solved, and 
other factors.   

One key insight that comes from many of the models we have discussed is that 
it is often relatively inexpensive to “buy” reliability—that is, if decision makers 
are willing to sacrifice just a bit in the objectives they are used to considering, they 
can gain significant improvements in other objectives, including reliability.   

The models discussed in this chapter by no means represent an endpoint for re-
search on facility location with disruptions.  Several important issues remain to be 
addressed.  One is computational: Many of these models are simply too difficult to 
solve, for reasonably sized instances, using off-the-shelf IP solvers.  Rather, spe-
cial-purpose algorithms, such as those proposed by Snyder and Daskin (2005a,b) 
and others, must be developed to solve these problems. 

Another important direction for future research involves capturing other types 
of supply chain decisions in a unified model.  A number of models attempt to in-
corporate tactical decisions, such as inventory and vehicle routing, into the facility 
location decision.  These models tend to offer a substantial improvement over a 
sequential optimization approach in which facility locations are chosen first, and 
then tactical decisions are made while keeping the strategic decisions fixed.  A 
natural next step is to consider facility failures in these models.  For example, 
Jeon, Snyder, and Shen (2006) consider facility failures in the context of the joint 
location-inventory model first proposed by Daskin, Coullard, and Shen (2002) and 
Shen, Coullard, and Daskin (2003).   
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A third avenue for future research involves multi-echelon facility location and 
network design problems with disruptions.  Such models might be based on the 
seminal distribution network design problem of Geoffrion and Graves (1974).  In 
the multi-echelon case, a key question is how to model the “cascading” effect of 
disruptions, as failures at one echelon lead to failures downstream, either explic-
itly (because of geographical proximity of the facilities, for example) or implicitly 
(as downstream facilities become starved for raw materials during a disruption).  
We hope that this chapter will help to spark future research on these and other re-
lated topics. 
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