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When designing supply chains, firms are often faced with the competing demands of improved customer
service and reduced cost. We extend a cost-based location-inventory model (Shen et al. 2003) to include

a customer service element and develop practical methods for quick and meaningful evaluation of cost/service
trade-offs. Service is measured by the fraction of all demands that are located within an exogenously specified
distance of the assigned distribution center. The nonlinear model simultaneously determines distribution center
locations and the assignment of demand nodes to distribution centers to optimize the cost and service objectives.
We use a weighting method to find all supported points on the trade-off curve. We also propose a heuristic
solution approach based on genetic algorithms that can generate optimal or close-to-optimal solutions in a much
shorter time compared to the weighting method. Our results suggest that significant service improvements can
be achieved relative to the minimum cost solution at a relatively small incremental cost.
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1. Introduction
Strategic supply chain design and redesign have
become a major challenge for firms as they simulta-
neously try to improve customer service and reduce
operating costs. Three major cost factors associated
with designing and managing a supply chain are
the facility location costs, the inventory management
costs, and the distribution costs. These three cost ele-
ments are highly related and, ideally, should be con-
sidered jointly when making supply chain design
decisions. Although building a decision-support sys-
tem that integrates these cost elements with cus-
tomer service goals is a considerable undertaking
for most businesses, doing so can provide a com-
pany with a tremendous competitive advantage in the
marketplace.
Determining the number and location of distribu-

tion centers (DCs) is a critical task in the design of
an effective supply chain network. The location the-
ory literature that addresses this problem is extensive;

however, the majority of these location models do not
consider the inventory related costs. Only recently,
Shen (2000), Shen et al. (2003), and Daskin et al.
(2002) introduced a joint location-inventory model
that incorporates working inventory and safety stock
inventory costs at the DCs into the location model.
Working inventory cost includes the fixed costs of
placing orders, the shipment costs from the supplier
to the DCs, and holding cost of the working inven-
tory. The problem is to find the number and location
of the DCs, and to assign customers to DCs, so as to
minimize facility location costs, shipment costs, and
inventory costs. The key difficulty in the model is that
both the inventory costs at each DC and the shipment
costs from the plant to the DCs depend nonlinearly
on customer assignments, which are endogenously
determined and are not known a priori. However,
the pricing subproblem (in the case of column gen-
eration used by Shen 2000 and Shen et al. 2003) or
the Lagrangian subproblem (in the case of Lagrangian
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relaxation as used by Daskin et al. 2002) can be solved
efficiently in low order polynomial time, resulting in
effective solution algorithms that can solve the over-
all problem for instances with hundreds of customer
and candidate DC nodes in a few minutes. One key
observation they make is that the traditional unca-
pacitated fixed charge (UFC) location model, which
does not include any inventory costs, always underes-
timates the total cost and opens more DCs than does
the location-inventory model.
An important supply chain design consideration

that has been ignored in these papers is customer
responsiveness. For instance, in the Shen et al. (2003)
cost-based model, a retailer may be assigned to a DC
that is very far away if doing so reduces the total
costs. This may not be desirable in a highly competi-
tive business environment. Many companies consider
service time, defined as how long it takes to trans-
port the products (services) to the customer site when
they are needed, to be a critical performance metric.
For example, General Motors Corporation developed
a program in Florida to reduce the amount of time
that Cadillac buyers wait for new cars. New cars are
held at a DC and are made available to the dealers
on order. A 24-hour delivery standard was used to
deliver new cars from DCs to dealers (Stern 1995).
This program has since been expanded to include
areas in Maryland and California. Another example
comes from the PC industry. To provide high-quality
service, IBM has implemented a parts stocking plan
to support a time-based service strategy. Specifically,
IBM wants to keep the response time within a thresh-
old level, say 2 hours to one set of customers, 8 hours
to another set of customers, and 24 hours for the rest
of the customers (Ma and Wilson 2002).
In both of the above environments, determining the

locations of the DCs that will hold the inventory (e.g.,
vehicles, parts) is critical, because it will impact both
the total costs (facility location costs, inventory costs,
and transportation costs) and the customer respon-
siveness. There is a clear need to evaluate trade-
offs among the total costs and customer service. In
this paper, we incorporate customer responsiveness
into a supply chain design model and analyze such
trade-offs.
The rest of this paper is organized as follows. Sec-

tion 2 discusses relevant results in the literature. Sec-
tion 3 provides the formulation of the model, and

§4 explains how to generate the trade-off between
cost and service using the weighting method. Sec-
tion 5 proposes a genetic algorithm approach to gen-
erating the trade-off curve. Computational results are
provided in §6. Finally, §7 concludes this paper with
directions for future research.

2. Literature Review
There exists an extensive literature on the multiobjec-
tive analysis of location problems; however, most of
these papers focus on continuous and network mod-
els. We review only multiobjective discrete location
models in this paper.
Ross and Soland (1980), in one of the earliest papers

on multiobjective location problems, argue that prac-
tical problems involving the location of public facil-
ities should be modeled as multiobjective problems.
Cost and service are the typical objectives, although
there exist several distinct objectives in each of those
two categories: fixed investment cost, fixed operating
cost, variable operating cost, total operating cost, and
total discounted cost are all reasonable cost objectives
to consider; and both demand served and response
time (or distance traveled) are appropriate objectives
for service measurement. They treat such multiob-
jective questions in the framework of a model for
selecting a subset of M sites at which to establish
public facilities to serve client groups located at N dis-
tinct points. They use an interactive approach that
involves solving a finite sequence of the generalized
assignment problems. Lee et al. (1981) apply an inte-
ger goal programming technique to a facility loca-
tion problem with multiple cost-related objectives.
The same technique has been applied to a multiobjec-
tive fire station location problem by Badri et al. (1998),
who consider objectives that incorporate costs, travel
times, and travel distances from stations to demand
sites. Another technique, hierarchical programming,
has also been applied to multiobjective location mod-
els where a clear ranking or hierarchy of the differ-
ent objectives exists. Daskin and Stern (1981) address
two hierarchical objectives in their paper on emer-
gency medical service vehicle deployment. The pri-
mary objective is to minimize the number of service
vehicles needed to satisfy a certain service require-
ment; and the secondary objective is to maximize the
extent of multiple coverage of service zones. There
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also exist works that apply general multiobjective
mixed-integer linear programming techniques to loca-
tion problems. For example, Solanki (1991) develops
an algorithm for solving biobjective mixed-integer lin-
ear programming problems and then applies it to
biobjective location problems. This algorithm uses
an approximate scheme to represent the noninferior
solutions. Finally, simulation has also been used to
validate multiobjective location models (Heller et al.
1989).
Multiobjective programming has also been applied

to dynamic location problems (Schilling 1980) and
location problems with uncertainty (Belardo et al.
1984). Belardo et al. study the problem of locating oil
spill response equipment using a partial set cover-
ing model. With the existing equipment, their objec-
tive is to attain the best protection while minimizing
the risk of being unprepared for events like oil spills.
Other earlier works on multiobjective location models
include a decision-support computer system (Hultz
et al. 1981) and surveys (ReVelle et al. 1981, Current
et al. 1990).
In a more general model, Jayaraman (1999) studies

a multiobjective model for a service facility location
problem with multiple products. Three objectives are
considered in his model: (1) minimizing the fixed cost
of opening facilities, (2) minimizing the total variable
costs of serving customer demands, and (3) minimiz-
ing the average response time for serving customers.
Recently, Fernandez and Puerto (2003) consider the

multiobjective uncapacitated facility location prob-
lem. Each objective corresponds to a different scenario
proposed by a different decision maker on the realiza-
tions of facility setup costs and the allocation costs of
customers to facilities. They also provide a review of
other multiobjective location models, including con-
tinuous and network location models.
There are several papers that apply a multiobjective

approach to supply chain planning models. For exam-
ple, Sabri and Beamon (2000) propose an integrated
multiobjective supply chain model for use in simul-
taneous strategic and operational supply chain plan-
ning. The objectives include cost, customer service
levels (fill rates), and flexibility (volume or delivery).
They tested their mathematical programming model
on an example system consisting of three raw materi-
als, two finished products, five vendors, three plants,
four DCs, and five customer zones.

Nozick and Turnquist (2001) present an optimiza-
tion model that is closely related to ours: minimize
cost and maximize service coverage. They adapt the
simple �S − 1� S� inventory policy and use a linear
function to approximate the safety stock inventory
cost function, which is then embedded in a fixed-
charge facility location model. Using a linear function
to approximate a nonlinear function makes the cor-
responding model much simpler; however, the error
induced can be significant unless the number of DCs
is very large. Furthermore, in their regression model,
they need to recalibrate their model (the contribu-
tion to the fixed cost due to inventory) in every case
because there is no clear relationship between the
underlying costs (e.g., holding costs, fixed order costs,
fixed transportation costs) and the fixed component
of the regression they fit. The Nozick and Turnquist
model is further simplified by ignoring some of the
costs we consider (e.g., fixed order costs, fixed trans-
portation costs from a plant to the DCs). Finally, they
solve the problem heuristically.
In this paper, we propose a more realistic model

by adding a service consideration into the supply
chain design model proposed by Shen et al. (2003).
As a result, we have a multiobjective optimization
model that includes the fixed order costs, the fixed
transportation costs from a plant to the DCs, and the
nonlinear working inventory cost and the nonlinear
safety stock inventory cost, resulting from a �Q� r�

inventory policy with a specified cycle service level
requirement. Furthermore, two solution approaches,
one based on the weighting method and the other
based on genetic algorithms, are proposed to solve
this multiobjective model. The genetic algorithm per-
forms very well compared to the weighting method,
and it is the only feasible approach for large-sized
problem instances, because the weighting method
requires excessive computational time in these cases.

3. Formulation of the Model
In this section, we formulate a multiobjective model
that can be used to explore the trade-off between the
location, transportation, and inventory costs on the
one hand and the level of service provided to the cus-
tomers on the other. We explore this trade-off in the
context of a multiechelon distribution system com-
posed of a single plant, multiple DCs, and multiple
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retailers. The location-inventory model at the heart of
this trade-off finds the optimal number and location
of the DCs and the assignment of retailers to the DCs
that minimize the sum of the (1) fixed DC location
costs, (2) transportation costs from the plant to the
DCs, (3) working inventory costs at the DCs, (4) safety
stock costs at the DCs, and (5) transportation costs
from the DCs to the retailers. Service is measured by
the percentage of demand volume that can be served
within an exogenously specified coverage distance.
We begin by summarizing the formulation of the

location-inventory model on which our model is
based on (Shen 2000, Daskin et al. 2002, Shen et al.
2003). We define the following notation:

I set of retailers,
J set of candidate DCs,

fj fixed (annual) cost of locating at candidate DC
site j ,

�i mean daily demand at retailer i,

2i variance of the daily demand at retailer i,
� days per year,
Lj lead time (in days) to deliver from the plant to
candidate site j ,

dij cost per unit shipped from candidate site j to
retailer i,

h holding cost per item per year (at the DC),
Fj fixed administrative and handling cost of plac-
ing an order to the plant from candidate DC
site j ,

z� critical value of a standard normal random
variable, Z, such that P�Z > z��= �,

vj�x� cost of shipping an order of size x from the
plant to DC j which we later assume to be
given by vj�x�= gj + ajx, where we have:

gj fixed transportation cost per shipment and
aj cost per unit of a shipment from the plant to
candidate site j .

To begin modeling the problem, assume for the
moment that we know which customers are to be
assigned to a specific DC. Assume that the demand
at each retailer is Normally distributed with a daily
mean of �i and a daily variance of 
2i , and the
demands at each retailer are uncorrelated over time
and across retailers. Let S be the set of customers
assigned to the DC. Then, we let D = �

∑
i∈S �i be

the total annual (expected) demand going through

the DC. The safety stock required to ensure that stock-
outs during a lead time occur with a probability of �

or less is z�

√
L
∑

i∈S 
2i .
Let vj�x� be the cost of shipping an order of size x

from the plant to the DC. Then, the expected annual
cost of ordering and holding working inventory at the
DC is given by

Fjn+ vj

(
D

n

)
n+ hD

2n
� (1)

where n is the (unknown) number of orders per year.
The first term of (1) represents the total fixed cost

of placing n orders per year. The second term repre-
sents the shipment cost vj�D/n� per shipment multi-
plied by the number of shipments per year. D/n is the
expected shipment size per shipment. The third term
is the holding cost at the DC of the average working
inventory. On average, there will be D/�2n� items of
working inventory on hand at a cost of h per item
per year.
If vj�x� is linear in x, that is, vj�x�= gj + ajx, where

gj denotes the fixed transportation cost per shipment
and aj denotes the cost per unit of a shipment from
the plant to candidate site j , it is easy to show that
n =√

�hD�/�2�Fj + gj� minimizes (1). By substituting
this into the cost function (1), we obtain a working
inventory cost of

√
2hD�F + g�+ aD.

We also define the following decision variables as
follows:

Xj =
{
1 if we locate at candidate site j�

0 if not�

Yij =



1 if demands at retailer i are assigned to a
DC at candidate site j�

0 if not#

Recall that D is not known a priori; rather it is given
by �

∑
i∈I �iYij for any DC j .

With this notation, we can formulate an integrated
location-inventory model as follows:

Minimize
∑
j∈J

fjXj +
∑
j∈J

∑
i∈I

d̂ijYij +
∑
j∈J

Kj

√∑
i∈I

�iYij

+∑
j∈J

%
√∑

i∈I
�
2ijYij (2)

subject to
∑
j∈J

Yij = 1 ∀ i ∈ I� (3)
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Yij ≤Xj ∀ i ∈ I� ∀ j ∈ J� (4)

Xj ∈ &0�1' ∀ j ∈ J� (5)

Yij ∈ &0�1' ∀ i ∈ I� ∀ j ∈ J� (6)

where
d̂ij = ��i�dij + aj��

Kj =
√
2h�

√
Fj + gj�

% = hZ��

�
2ij = Lj

2
i #

The objective function (2) is composed of four
terms. The first term represents the annual fixed cost
of locating DCs. The second term captures the aver-
age annual cost of shipping goods from the DCs to the
retailers, as well as the variable costs of shipping from
the plant to the DCs. The third term represents the
average annual working inventory costs and includes
the fixed administrative and handling cost of ordering
from the DC to the plant, as well as the fixed shipment
costs from the plant to the DCs. Finally, the fourth
term captures the average annual safety stock carry-
ing costs. The first constraint (3) ensures that each
demand node is assigned to exactly one DC. The sec-
ond constraint (4) stipulates that demands can only be
assigned to open DCs. Finally, constraints (5) and (6)
are integrality constraints. Note that were it not for
the final two terms of the objective function, the
model would be structurally identical to an uncapac-
itated fixed charge location model.
The working inventory carrying costs represent

the optimal economic order quantity costs, while the
safety stock costs capture the cost of holding sufficient
inventory to ensure that the probability of stocking
out during a lead time is less than or equal to �. In
essence, we are using a �Q� r� inventory model with a
type I service-level requirement (Hopp and Spearman
1996, Nahmias 1997).
Finally, we assume that the ratio of the variance of

the demand per unit time to the mean demand per
unit time is the same for every retailer, that is, 
2i /�i

= ( for every demand node i. While this may seem
like an overly restrictive assumption, if the retailer
demands are Poisson—and the Poisson distribution

can be approximated very well by the normal dis-
tribution if the mean is sufficiently large—then this
assumption is exact with ( = 1. With this additional
assumption, we can combine the two nonlinear terms
in (2) and rewrite the objective function as

Minimize
∑
j∈J

fjXj +
∑
j∈J

∑
i∈I

d̂ijYij +
∑
j∈J

�Kj

√∑
i∈I

�iYij� (7)

where �Kj =Kj +%
√

Lj(.
This model is still a nonlinear integer programming

model, but Daskin et al. (2002) show that the subprob-
lems that result from relaxing constraint (3) can be
solved in O��I� log �I�� time for each such problem and
there are O��J�� such subproblems that must be solved
at each Lagrangian iteration. When coupled with
intelligent heuristics for finding good upper bounds
and when the Lagrangian problem is embedded in a
branch-and-bound solution approach, problems with
hundreds of retailers and hundreds of candidate DCs
can typically be solved in minutes on today’s comput-
ers. Shu et al. (2005) report an efficient algorithm to
solve the original problem (2)–(6) with two nonlinear
terms in the objective function. To facilitate the com-
putational work, we still assume that 
2i /�i = ( for
every demand node i in this paper.
While the above model captures important facil-

ity location, transportation, and inventory costs, some
retailers may be served very well, in the sense that
they are located very close to the DCs to which they
are assigned, while other retailers may be served very
poorly by this criterion. The maximal covering loca-
tion problem (Church and ReVelle 1974) maximizes
the number of customers that can be covered by a
fixed number of facilities. Customer i is covered if
node i is assigned to a facility that is within dc of
node i, where dc is the coverage distance. Instead of
maximizing covered demand volume, for fixed total
demand, we can minimize the uncovered demand
volume. In a manner similar to Daskin (1995), we can
then formulate a problem that simultaneously mini-
mizes the fixed costs of the facilities and a weighted
sum of the uncovered demand volume as follows:

Minimize
∑
j∈J

fjXj +W
∑
j∈J

∑
i∈I

d̃ijYij (8)

subject to (3)–(6)�
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where W is the weight on the uncovered demand vol-
ume and

d̃ij =
{

��i if dij > dc�

0 if not#

Objectives (7) and (8) can be combined as follows:

Minimize
∑
j∈J

fjXj +
∑
j∈J

∑
i∈I

d̆ijYij +
∑
j∈J

�Kj

√∑
i∈I

�iYij� (9)

where d̆ij = d̂ij +Wd̃ij . This model is structurally iden-
tical to (7). The only difference is that we penalize all
assignments of demand nodes to DCs that are more
than dc away from the DC. By varying the weight W

on uncovered demand volume, we can trace out an
approximation to the set of noninferior solutions to
the trade-off between location-inventory costs (7) and
customer responsiveness. Very small values of W cor-
respond to minimizing the total location-inventory
cost; very large values of W are equivalent to mini-
mizing the total location-inventory cost subject to the
constraint that all demands are covered within a dis-
tance dc of the DC to which they are assigned.

4. Generating the Trade-off Between
Cost and Service Using the
Weighting Method

With respect to a particular coverage distance dc,
we now illustrate how to determine appropriate val-
ues for W , the weight to be placed on uncovered
demand volume to generate a trade-off curve. We
define a solution with location-inventory costs C

and uncovered demand volume U to be noninfe-
rior if there does not exist some other solution with
cost C ′ and uncovered demand volume U ′ such that
C ′ ≤C and U ′ ≤ U with strict inequality holding for
at least one of the two inequalities. Suppose that
we already have two different noninferior solutions
with location-inventory costs C1 and C2, respectively,
and uncovered demands U 1 and U 2, respectively, as
shown in Figure 1. The weighting method (Cohon
1978) attempts to find noninferior solutions to the
south and west of the line connecting any two non-
inferior solutions when plotted in objective space. If
we equate the objective function values at each of the
two solutions, we obtain

C1+WU 1 =C2+WU 2

Figure 1 Determining the Weight, W

(U1,C1)

(U 2,C 2)

Uncovered demand

Lo
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tio
n

/In
ve

nt
or

y 
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st

A

B

which, when solved for W , yields

W = C2−C1

U 1−U 2
# (10)

By selecting two adjacent noninferior solutions, we
can use the weight determined in (10) in objective
function (9) to determine whether or not there is a
noninferior solution to the south and west of the line
connecting the two solutions; i.e., in region A. The
weighting method will not find noninferior solutions
that might exist to the north and east of the line; i.e.,
in region B.
Determining the first two points to use in this pro-

cess is relatively easy. To determine the bottom-most
point, the one that minimizes the location-inventory
cost, we simply minimize (7) subject to (3)–(6). For
real-world systems there is unlikely to be a solu-
tion with equal (minimal) cost and smaller uncovered
demand (i.e., directly to the left of the first point).
For artificial data sets or for cases in which the ana-
lyst believes that such solutions might exist, objective
function (7) can be minimized and the total location-
inventory cost recorded. Then, objective function (9)
can be minimized subject to (3)–(6) with a small
weight on the uncovered demand volume. The total
cost (excluding any penalties for uncovered demand
volume) from this model can be compared to the total
cost recorded for objective function (7) alone. If the
two objective function values are the same, then the
solution to (9) provides the optimal bottom-most solu-
tion in the objective space shown in Figure 1 (i.e., the
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bottom-most solution that is furthest to the left). If the
costs are not the same (i.e., the cost from (9) exceeds
that found using (7) alone), the weight W should be
halved in the objective function (9) and the process
repeated until the two costs are identical. In the com-
putational results outlined below, we did not imple-
ment this process of halving the weight W because
the data sets with which we are dealing are represen-
tative of real data for which the likelihood of there
being an alternate optimal solution with smaller lev-
els of uncovered demand is very small.
To find the left-most point of Figure 1, the solu-

tion that covers all demand at minimum cost, con-
sider any demand node m that is not covered in the
solution that minimizes cost without regard for cov-
erage. The contribution of this node to the objective
function (9) is

��m�dmj�m�+aj�m�+W�+ �Kj�m�

{√ ∑
i∈Sj�m�

�i−
√ ∑

i∈Sj�m�\m
�i

}
�

where j�m� is the index of the facility to which de-
mand node m is assigned, W is the weight that will
be assigned to uncovered demands, and Sj�m� is the
set of demand nodes assigned to j�m�. One way for
node m to be covered is to locate a facility at that
node at a fixed cost of fm. In that case, the contribu-
tion of node m to the objective function would be fm +
��m�dmm + am� + �Km

√
�m. If this cost is less than the

contribution of node m to the objective function when
node m is assigned to j�m�, it will be advantageous to
open a facility at m to serve node m. In other words, if

fm +��m�dmm + am�+ �Km

√
�m

< ��m�dmj�m� + aj�m� +W�

+ �Kj�m�

{√ ∑
i∈Sj�m�

�i −
√ ∑

i∈Sj�m�\m
�i

}
�

or if

W >
1

��m

{
fm+ �Km

√
�m− �Kj�m�

[√ ∑
i∈Sj�m�

�i−
√ ∑

i∈Sj�m�\m
�i

]}

+ &dmm + am − �dmj�m� + aj�m��'�

it is better to open a facility at m to serve node m

than to continue serving node m from j�m�. In our

tests, all �Kj are equal as are all aj . Also, dmm = 0 for all
nodes m. Thus, the condition above becomes

W >
1

��m

{
fm + �Km

[
√

�m −
√ ∑

i∈Sj�m�

�i

+
√ ∑

i∈Sj�m�\m
�i

]}
− dmj�m�#

Furthermore,

1
��m

&fm+ �Km

√
�m'−dmj�m�

>
1

��m

{
fm+ �Km

[
√

�m−
√ ∑

i∈Sj�m�

�i+
√ ∑

i∈Sj�m�\m
�i

]}
−dmj�m�

(because −√∑
i∈Sj�m�

�i +
√∑

i∈Sj�m�\m �i < 0). The left-
hand side of this inequality is easier to compute
because it does not entail identifying the set Sj�m�.
Thus, to find the solution that covers all demand at
minimal cost, we can set

W >max
m∈U

{
1

��m

{
fm + �Km

√
�m

}− dmj�m�

}
�

where U is the set of demand nodes that are not
covered in the solution to the pure minimum cost
problem.
Once the two extreme solutions are known—the

solution that minimizes the location-inventory cost
and the solution that covers all demand at minimal
cost—the procedure outlined above can be used iter-
atively until the solution to (9) for every pair of adja-
cent solutions in the solution space fails to identify a
new point on the trade-off curve. Note that if n points
on the final trade-off curve are identified (including
the end points), we must solve 2n − 1 problems of
the form of (9) subject to (3)–(6). Each of these prob-
lems is identical in structure to the model outlined in
Daskin et al. (2002) and is solved using the algorithm
outlined in that paper. In solving problems other than
those needed to get the extreme points of the trade-
off curve, however, we can provide an initial upper
bound to the Lagrangian algorithm. In finding solu-
tions that may lie between two solutions with coordi-
nates in the objective space of �U 1�C1� and �U 2�C2�,
we know that C1 + WU 1 = C2 + WU 2 is an upper
bound on the objective function. In most of the results
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reported in the next section we used this bound and
discuss the efficacy of this bound in §6.3. Qualita-
tively, this bound will affect the step size used at each
iteration of the Lagrangian procedure. More impor-
tantly, it may allow us to prune certain nodes in the
branch-and-bound tree earlier than we might be able
to do in the absence of this bound.
As shown in the section on computational results,

the exact algorithm outlined in this section requires
excessive computational time for certain problem
instances. One approach to resolving this problem
is to solve the optimization problems approximately
by considering a node in the branch-and-bound tree
as pruned if the lower and upper bounds differ by
less than 2 percent, where 2 > 0. In the next sec-
tion, we discuss another approach based on a genetic
algorithm.

5. A Genetic Algorithm Approach
In addition to implementing the solution technique
outlined in §4, we developed a heuristic solution
approach based on a genetic algorithm. Within the
context of this approach, a solution is represented by
a series of zeros and ones whose length is equal to
the number of candidate DC nodes in the problem.
This series corresponds to the location variables, Xj ,
defined earlier. In decoding a solution, we open facili-
ties at the locations encoded as a one and assign every
demand node to its nearest open facility. We do not
attempt to improve the cost by exchanging assign-
ments for demand nodes even though a solution that
minimizes the combined location-inventory cost for
given facility sites may entail assigning a demand
node to a facility other than the nearest open site.
We do this for three reasons. First, we want to keep
the solution times relatively low. Second, the num-
ber of demand nodes that are assigned to a site other
than the nearest site is often very small, as indicated
in the computational results below. Finally, in our
experience, the cost penalty that is paid for assigning
demand volumes to the nearest facility as opposed to
assigning them optimally is only on the order of a
fraction of a percent. We note, however, that adding
a heuristic to improve the assignment of customers to
DCs may be important for systems whose parameters
differ markedly from those we have tested. In partic-
ular, for systems with large variance to mean ratios

for customer demands, the benefits of a more careful
assignment of customers to DCs may be significant.
To evaluate the quality of any solution, we first find

its cost and the demand volume that is left uncovered
by the solution. Any solution k that is not dominated
is assigned a score or value, Vk, of zero. Solutions
that are dominated are compared to the nondomi-
nated solution that is to the immediate left and below
the dominated solution in question. Dominated solu-
tions are assigned a score that is equal to the product
of the absolute value of the difference between the
location-inventory cost of the dominated solution and
the nondominated solution to which it is compared
and the absolute value of the difference in uncovered
demand volume between the two solutions. If one of
the absolute values is zero (e.g., if the dominated solu-
tion has the same cost as the nondominated solution),
the score is simply equal to the absolute value of the
measure whose absolute value is nonzero (e.g., the
uncovered demand in this case).
The genetic algorithm is based on five genetic

operators: elite preservation, expansion, importation,
crossover, and mutation. Each is described below. In
addition, we applied an improvement algorithm to
selected members of the population at each gener-
ation.
We implemented a generational replacement ge-

netic algorithm, in which a new generation replaces
the previous generation, as opposed to a steady-state
algorithm in which the least desirable elements of the
population are replaced as new solutions are identi-
fied. To initiate the construction of generation t + 1,
all nondominated solutions in generation t are copied
to the emerging generation t + 1. This is the elite
preservation operator. Because the number of nondom-
inated solutions is unknown a priori, there is a risk
that a very large fraction of the solutions in genera-
tion t + 1 will be nondominated, leaving little room
for new solutions. To mitigate against this possibil-
ity, we implemented a new genetic algorithm operator
that we term expansion. After the nondominated solu-
tions from generation t are copied to generation t+1,
we set the population size for generation t + 1 to be
the maximum of the population size at generation t

and twice the number of nondominated (elite) solu-
tions copied to generation t + 1, as long as this max-
imum was less than 2,000. If the maximum exceeded
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2,000, we capped the population size at 2,000. In the
31 runs summarized in §6 below, this cap was never
reached, even though expansion occurred in 24 of the
32 instances.
The remainder of generation t + 1 is filled using

importation, crossover, and mutation. Twenty percent
of the remaining solutions in generation t + 1 are
generated randomly using an importation operator. For
each such solution, we first generate a random num-
ber that is used as a cutoff. Then, for each node, we
draw a new random number. If the random number
associated with a node is less than the cutoff value,
we locate a facility at that node in the trial solu-
tion; otherwise, we do not. The purpose of the cutoff
(which itself is uniformly distributed between zero
and one as are all of the random numbers associated
with each individual node) is to ensure that the dis-
tribution of the number of sites in the imported solu-
tions is uniform. Each trial solution that is generated
in this way is added to generation t+1, provided the
solution is not already part of generation t + 1.
The remaining solutions in generation t+1 are gen-

erated using crossover and mutation. Two different
parents are selected at random from the generation t
population with a bias toward the better solutions.
The probability that solution k is selected as a parent
from generation t is given by

2V t
max−V t

k∑
k∈Pt �2V t

max−V t
k �

= 2V t
max−V t

k

2�Pt�V t
max−

∑
k∈Pt V t

k

�

where V t
max is the largest value in the population at

generation t, V t
k is the value of solution k at genera-

tion t, and Pt is the population of solutions at gen-
eration t. We ensure that the two parents are not the
same by rejecting the second parent if it is the same
as the first and sampling again until a different parent
is identified. A random crossover point is selected and
the genes to the left of the crossover point of the first
selected parent and those to the right of the crossover
point of the second selected parent are merged to cre-
ate a child solution. Then, with probability equal to
the mutation probability, the solution is mutated. If the
solution is to be mutated, a single gene is selected at
random and the value of this gene is switched (from
one to zero or vice versa). Child solutions generated
in this manner are added to the population of gener-
ation t + 1, provided the solution is not already part
of generation t + 1.

Once generation t + 1 has been fully populated,
with the exception of one set of runs specifically iden-
tified in the results section, we apply one or both
of two improvement operators to a randomly selected
member of the population that has not been improved
before as well as to all supported solutions after
an initial evaluation of generation t + 1. (Note that
improving one solution may result in another solution
no longer being supported.) Recall that a supported
solution is a nondominated solution that is also on
the convex hull of the solutions when the solutions
are plotted in objective space. (Note that elite solu-
tions that are carried over from generation t might
have been improved in an earlier generation.) The
first improvement operator, which we term a change,
considers changing every gene, one at a time, from
its current state to the opposite state (from zero to
one or vice versa) to see if any such change will
reduce at least one of the two objectives—the location-
inventory cost or the uncovered demand—without
increasing the other objective. If such a change is
found, it is immediately implemented and the search
for additional improvements continues with the next
gene. The search is repeated until no gene can be
altered to improve at least one objective without
degrading the other. If the improved solution dif-
fers from a solution in the population, it is saved
as improved; otherwise, the unimproved solution
remains in the population. In either case, the solu-
tion is identified as having been improved so we do
not subsequently attempt to improve the solution. In
addition to the randomly selected solution, all sup-
ported solutions that have not been subjected to the
improvement operator are also improved in this way.
For supported solutions, we also considered a second
improvement operator that we call a swap, in which
all possible ways of swapping a facility that is in the
solution for one that is not in the solution are con-
sidered. As indicated above, in one set of runs, no
improvements were attempted on any members of
the population so that we could assess the impact
of the pure genetic algorithm, without the improve-
ment operators. In the runs in which improvement
was attempted, we improved only one solution per
generation, in addition to the supported solutions.
To generate each solution of the initial population,

we first pick the number of facilities to be in the



Shen and Daskin: Trade-offs Between Customer Service and Cost in Integrated Supply Chain Design
Manufacturing & Service Operations Management 7(3), pp. 188–207, © 2005 INFORMS 197

solution from a uniform distribution between one
and the number of candidate locations. Then, we
randomly select that number of candidate sites to
be facilities. This process is repeated for each mem-
ber of the population. For the initial population, all
supported solutions are improved and an additional
50 solutions (out of an initial population of 100) are
also improved using both improvement operators,
changes, and swaps.
The genetic algorithm terminates when either of

two conditions is satisfied. The algorithm is stopped
if a user-specified number of generations have been
generated. Alternatively, the algorithm is stopped if
the number of consecutive generations in which no
change in the set of nondominated solutions has been
found exceeds a (different) user-specified value.

6. Computational Results
6.1. Input Conditions
Five realistically sized data sets were used to test the
model outlined above. Basic characteristics of the data
sets as well as key input parameters for the runs are
shown in Table 1. Great circle distances were used in
all five data sets. The data sets ranged in size from
49 nodes to 263 nodes. Sortcap is a 49-node data set
representing the 48 capitals of the contiguous United
States as well as Washington, D.C. The population
at each node is equal to the 1990 population of the
state (or city in the case of Washington, D.C.). The
fixed facility location cost is equal to the 1990 median
home value in the city. City1990 is the Sortcap data
set expanded to 88 nodes to include the 50 largest
cities in the continental United States according to the
1990 census. The population at each node in this data

Table 1 Summary of Test Data

Total Total average Distance Coverage
Data file Nodes population daily demand metric distance

Sortcap 49 247�051�601 741.15 miles 300
City1990 88 44�840�571 134.52 miles 300
150City 150 58�196�530 174.59 miles 300

(300 miles)
150City 150 58�196�530 174.59 miles 150

(150 miles)
Europe150 150 77�969�385 233.91 kilometers 150
USA2000 263 263 78�396�814 235.19 miles 300

Big Cities

set equals the 1990 city population. 150City represents
the 150 largest cities in the continental United States
according to the 1990 census. Again, a node’s pop-
ulation is equal to the city’s population. All fixed
costs, however, are set equal to $100,000 in 150City.
Two different coverage distances were tested for this
data set—150 miles and 300 miles. USA2000 263 Big
Cities represents the 263 largest cities in the continen-
tal United States according to the 2000 census. Pop-
ulations again correspond to the city population and
all fixed costs again equal $100,000. Finally, Europe150
includes the 150 largest cities in Europe. As before,
a node’s population is equal the city population and
all fixed costs equal $100,000. The coverage distance
for this data set was set to 150 kilometers.
Table 2 gives the values of the model parameters

that are common to all five data sets. In all cases, the
demand at node i ��i� is set equal to three demands
per day per million people in the population.
Table 3 summarizes the Lagrangian parameter set-

tings for the computational results. These parameters
can be used in the SITATION software (Daskin 2004).

6.2. Lagrangian Model Results
Table 4 contains a summary of the Lagrangian results
for the five test problems for which the optimal trade-
off curve was identified. After running for more than
three days or more than 260,000 seconds, the pro-
gram had not identified more than about half a dozen
supported points on the optimal trade-off curve for
the European data set. When we relaxed the opti-
mality criterion for this data set, as outlined in §6.3,
we identified over 30 noninferior solutions for this
data set. The limited results shown in Table 4 for
the European data set are based on the merging of the

Table 2 Model Parameters Common to All Runs

Parameter Value

Demands per unit population per day 0.000003
Lead time (days) 5
Variance to mean ratio 1
z� 1�96
Holding cost per unit per year 100
Fixed order cost at a DC 250
Dollars per demand mile in local delivery 0�01
Days per year 365
Fixed cost per shipment to a DC 10
Per unit cost of shipments to a DC 5
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Table 3 Lagrangian Parameters Common to All Runs

Key Lagrangian parameters

Exchange
Substitution option at end of Lagrangian algorithm

Critical percentage difference 0
Number of iterations 400
Number of iterations at root node 1,200
Minimum alpha value allowed 1.00E–08
Number of failures before changing alpha 12
Number of failures before changing alpha at root node 36
Crowder damping term 0.3
Restart failure count on improved solution TRUE
Assignment search on improved solution TRUE
Root node forcing TRUE
CONSTANT in initial Lagrange multipliers 0
SLOPE in initial Lagrange multipliers 0
AVERAGE in initial Lagrange multipliers 10
DEMAND in initial Lagrange multipliers 0
FIXED in initial Lagrange multipliers 10
Do Lagrangian bounding TRUE

trade-off curves found in eight runs—two using the
Lagrangian approach with relaxed optimality criteria
as shown in Table 6 and six using the genetic algo-
rithm with varying termination criteria as shown in
Table 9. In the merged data set there were 52 solu-
tions that were supported relative to the other solu-
tions. The number of facilities in these 52 solutions
ranged from 1 to 52. The time required to solve for
the entire trade-off curve generally increases as the
number of nodes increases. For the two data sets
with under 100 nodes, the total solution time was
under five minutes. For the larger data sets with
150 nodes and 263 nodes, the solution time ranged
from more than 9 minutes to more than 32 hours.
(All computation times are on a Dell Latitude C640

Table 4 Summary Results for the Six Test Problems

Number of Nonclosest
Number of Minimum Maximum solutions Number of as % of all

Number of Solution Lagrangian Branch-and-bound supported number number with nonclosest nonclosest assignments
Data file nodes time (sec.) iterations nodes solutions of sites of sites assignments assignments (%)

Sortcap 49 48�59 15�327 49 12 5 13 6 9 1�53
City1990 88 239�12 41�359 133 19 2 15 15 40 2�39
150City 150 569�15 43�124 131 16 2 13 12 61 2�54

(300 miles)
150City 150 7�515�62 530�525 2�111 39 2 38 37 266 4�55

(150 miles)
Europe150 150 N/A N/A N/A 52 1 52 N/A N/A 1�62
USA2000 263 Big 263 118�332�58 2�892�080 12�737 19 1 15 14 81 N/A

Cities

laptop computer running at 2.0 GHz. The program
was coded in Delphi.) The number of Lagrangian iter-
ations and the number of branch-and-bound nodes
required to solve for the entire trade-off curve exhibit
similar patterns. The computation time increases as
the coverage distance decreases because additional
solutions are typically found.
In addition to information about the computation

times, Table 4 also provides information on the num-
ber of supported solutions found for each data set.
For the 4 data sets based on U.S. data and a cov-
erage distance of 300 miles, the number of solutions
ranged from 12 to 19; when the coverage distance
decreased to 150 miles for 150City, 39 supported solu-
tions were identified. For the European data with a
coverage distance of 150 kilometers or about 90 miles,
52 supported solutions were identified in the merged
trade-off curve as described above. The minimum
number of sites—the number associated with the min-
imum cost solution—ranged from 1 to 5 while the
maximum number—the number of sites needed to
cover all demands within the coverage distance—
ranged from 13 to 52. As expected, the maximum
number of sites increases as the coverage distance
decreases because more facilities are needed to cover
all demands. Note also that while many solutions
involved assigning demand nodes to facilities other
than the closest one, the aggregate percent of all
assignments that were to nonclosest facilities was
under 5% in all cases for which we could identify the
optimal trade-off curve. Finally, we selected one solu-
tion from the 150City (300 mile) case in which 12 of
the 150 nodes were assigned to facilities other than the
closest facility. Forcing these 12 nodes to assign to the
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Figure 2 Results for 150City Data Set with Coverage Distance of 300 Miles

Covering location/inventory trade-off curve
Coverage distance = 300   Convergence % = 0.000000
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closest facility increased the cost from $1,906,878 to
$1,908,747, a difference of $1,869 or less than 0.1%. We
believe that this justifies our choice of not implement-
ing a search for nonclosest assignments in the genetic
algorithm.
Figure 2 shows typical results that we obtained

using the Lagrangian approach. The figure shows the
trade-off curve for the 150City data set and a cov-
erage distance of 300 miles. The step function is the
location-inventory model objective function while the
bar graph, with a scale on the right-hand side of
the figure, is the number of facilities located. The
minimum cost solution is at the far right of the fig-
ure; two facilities are located at a total annual cost
of approximately $896,000 leaving more than 44,385
annual demands (or nearly 70% of the total annual
demand) uncovered. This solution is shown in Fig-
ure 3. However, for less than a 6% increase in annual
cost, the uncovered demand volume can be reduced
to less than 38% of the total annual demand. This
entails locating one additional facility, as shown in
Figure 4. On the other hand, covering all demands
necessitates a 113% increase in cost and the siting of
13 facilities.
Figure 5 shows the trade-off curve that resulted

from using the 150City data set with a coverage dis-
tance of 150 miles. Again, significant reductions in the

uncovered demand can be achieved at relatively little
increase in cost, while covering all demands requires
a very large cost increase. With the smaller coverage
distance, the increase in cost associated with covering
all demands is even greater (more than 400% more
than the minimal cost).

6.3. Effects of Upper Bounding and Different
Optimality Gaps on the Lagrangian Solutions

In this section, we evaluate the impact of changing
the Lagrangian convergence criterion and using or
not using the bounding rule outlined in §4, which
states that the upper bound on any solution that
lies between two solutions �U 1�C1� and �U 2�C2� is
C1 + WU 1 = C2 + WU 2. The effects are evaluated in
terms of three measures of the solution difficulty—
the solution time, the number of branch-and-bound
nodes evaluated, and the number of Lagrangian iter-
ations needed to identify the trade-off curve—and
one measure of the solution quality, the number of
solutions found. Table 5 presents the results of tests
applied to the 150City data set with a service distance
of 300 miles. The solution time, number of branch-
and-bound nodes, and number of Lagrangian iter-
ations all go down as the convergence criterion is
relaxed from optimality (0.0%) to 0.5% and, finally to
1.0%. The three measures all increase by about 50% if
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Figure 3 Minimal Cost Solution for 150City Data Set with a Coverage Distance of 300 Miles

Map of Solution 16
Covering location/inventory  % Coverage distance = 30.35  Location/Inventory objective function = 895,683.6

Figure 4 A Solution that Reduces Uncovered Demand by 47%, While Increasing Cost by Less Than 6%

Map of Solution 11
Covering location/inventory  % Coverage distance = 63.08  Location/Inventory objective function = 946,184.6
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Figure 5 Results for 150City Data Set with Coverage Distance of 150 Miles

Covering location/inventory trade-off curve
Coverage distance = 150   Convergence % = 0.000000
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bounding is not employed. Bounding has no effect on
the final trade-off curve that is identified if the opti-
mality gap is zero; however, for nonzero optimality
gaps, the number of solutions found on the trade-off
curve depends on the optimality gap and on whether
or not bounding is used. For nonzero optimality gaps,
the trade-off curve that is found is an approxima-
tion of the actual curve. At least in the limited test-
ing reported below, the number of solutions found
for these approximate curves is less than the number
identified in the optimal curve.
Despite the fact that the trade-off curve identi-

fied with an optimality gap of zero is the “optimal”

Table 5 Effects of Different Optimality Gaps and Bounding Using
150City Data Set with a Coverage Distance of 300 Miles

Solution times (sec.) B&B nodes

Optimality No Optimality No
gap (%) Bounding bounding gap (%) Bounding bounding

0.00 569.15 912.36 0.00 131 213
0.50 135.54 212.71 0.50 25 36
1.00 79.50 109.33 1.00 15 20

Iterations Number of solutions found

0.00 43,124 62,711 0.00 16 16
0.50 10,244 14,578 0.50 11 12
1.00 6,094 7,456 1.00 8 10

curve, it does not necessarily include all noninferior
solutions, as there may be solutions in the duality gap
region. This is region B of Figure 1. In the experi-
ments outlined below, one such solution was iden-
tified. When the optimality gap was set to 1% and
bounding was not used, one additional noninferior
point was identified. It lies between the fourth and
fifth least costly solutions shown in Figure 2, which
depicts the optimal trade-off curve for the 150City
data set with a coverage distance of 300 miles. Thus,
while allowing a nonzero optimality gap will result
in a trade-off curve that is not guaranteed to be opti-
mal, doing so may allow the analyst to find solu-
tions, which would not otherwise be found using the
weighting method.
To test the effect of the optimality gap further,

we varied the optimality gap in all five test prob-
lems for which we could find the optimal solution
using Lagrangian relaxation as well as the results
for the Europe150 data set for which an exact solu-
tion is not known. The results are shown in Table 6.
The first three columns describe the problem. The
fourth column gives the optimality gap. The solution
time, number of Lagrangian iterations, and number
of branch-and-bound nodes are shown in Columns 5
through 7.
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Table 6 Tests of Optimality Gap on Solution Time and Solution Quality
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Sortcap 49 300 1 12�69 3�643 17 9 8 7 8 0.05589 0.44716 6 9
0�5 16�14 4�756 21 11 10 9 10 0.04472 0.44716 6 11
0�1 18�00 5�376 23 12 12 12 12 0.00000 0.00000 6 9
0�01 19�21 5�698 23 12 12 12 12 0.00000 0.00000 6 9

Optimal 48�59 15�327 49 12 12 12 N/A N/A N/A 6 9

City1990 88 300 1 82�59 14�187 43 14 14 14 14 0.00000 0.00000 10 27
0�5 114�01 19�578 65 16 16 15 16 0.00317 0.05066 12 33
0�1 173�79 30�005 99 19 18 18 18 0.00000 0.00000 15 40
0�01 184�56 31�942 107 19 19 19 19 0.00000 0.00000 15 40

Optimal 239�12 41�359 133 19 19 19 N/A N/A N/A 15 40

150City 150 300 1 79�50 6�094 15 8 8 4 8 0.02974 0.18387 6 37
0�5 135�54 10�244 25 11 11 7 11 0.02163 0.18387 9 50
0�1 218�37 16�569 51 15 15 14 15 0.00091 0.01368 11 60
0�01 306�65 23�307 71 16 16 15 16 0.00005 0.00075 12 61

Optimal 569�15 43�124 131 16 16 16 N/A N/A N/A 12 61

150City 150 150 1 247�22 18�183 45 23 19 14 4 0.02087 0.07355 21 147
0�5 220�18 15�127 37 19 19 3 19 0.02963 0.25756 18 116
0�1 418�18 29�201 61 31 31 11 31 0.00560 0.04995 30 215
0�01 3�632�81 245�199 883 39 39 23 39 0.00089 0.00891 37 272

Optimal 7�515�62 530�525 2�111 39 39 39 N/A N/A N/A 37 266

Europe150 150 150 km 1 875�96 58�583 123 33 30 15 24 0.00434 0.01817 28 249
0�5 4�167�46 241�724 816 34 34 24 31 0.00152 0.01254 29 218

Best known 52 52 52 N/A N/A

USA2000 263 263 300 1 7�973�41 177�041 624 17 16 8 12 0.01224 0.11109 13 93
Big Cities 0�5 20�173�59 475�573 1�817 20 17 8 14 0.01305 0.09880 16 114

0�1 65�816�99 1�628�549 6�671 20 19 13 19 0.00438 0.02741 15 105
0�01 107�642�95 2�612�143 11�275 19 19 17 19 0.00010 0.00112 14 78

Optimal 118�332�58 2�892�080 12�737 19 19 19 N/A N/A N/A 14 81

The remaining eight columns give an indication of
the quality of the solution curve. Column 8 gives the
number of supported solutions found by the algo-
rithm with the indicated optimality gap. The final row
for each data set gives the optimal set of supported
solutions (or the best-known solution in the case of
the Europe150 data set). When the optimality gap is
greater than zero, the algorithm may find solutions
that are not supported even with respect to the other
solutions found. In other words, the algorithm can
find a solution that ends up in region B of Figure 1.
Column 9 gives the number of solutions that are sup-

ported with respect to the other solutions found in
that run. Not all of the supported solutions reported
in Column 8 are optimal. This number is reported in
Column 10.
The next three columns provide a measure of the

deviation of the suboptimal trade-off curve from the
optimal set of supported solutions. Column 11 reports
the number of solutions found that had the same total
demand coverage as one of the optimal supported
solutions. For example, for the 49-node Sortcap data
set, with an optimality gap of 1%, the algorithm found
8 solutions that had the same total coverage as one
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of the 12 optimal supported solutions. The next two
columns report the average and maximum percentage
error in the location-inventory cost objective for the
suboptimal solutions whose coverage corresponds to
that of an optimal supported solution.
Finally, Column 14 reports the number of solutions

(out of the total number of solutions found reported
in Column 8) that entailed assigning any nodes to a
nonclosest facility. Column 15 reports the total num-
ber of such nonclosest assignments over all solution
assignments (which equals the number of solutions
times the number of nodes given in Column 2). The
percentage of all assignments that are to nonclosest
facilities is under 5%, except for the Europe150 solu-
tion run with a 1% convergence criterion for which
the percentage is 5.03%. Averaged over all runs, 3.14%
of the assignments are to nonclosest facilities.
While the quality of the solution degrades as the

optimality gap increases in all cases, the solution qual-
ity remains high for optimality gaps below about
0.5%. Columns 11, 12, and 13 of the table indicate
that most of the suboptimal solutions have the same
uncovered demand as one of the optimal solutions
and that the location-inventory cost differs from the
optimal cost by under 0.06% on average and under
0.5% in all cases reported. However, increasing the
optimality gap significantly reduces the solution time.
Increasing the optimality gap from 0.0% to 0.01%
reduced the solution time more than 30% on average.
At an optimality gap of 0.5%, the solution time was
approximately 75% less than the time required for the
optimal solution. These results suggest that very good
approximations to the trade-off curve can be found
by reducing the optimality gap in the Lagrangian
algorithm.

6.4. Genetic Algorithm Results
The genetic algorithm was tested on each of the six
test problems identified in Table 1. The parameters for
the genetic algorithm are shown in Table 7. All runs,

Table 7 Basic Genetic Algorithm Parameters

Parameter Parameter value

Initial population size 100
Mutation probability 0�1
Fraction of nonelite solutions 0�2

generated via importation

Table 8 Termination Criteria for Genetic Algorithm Cases

Maximum number of generations
Maximum number without a change in the set

Case of generations of nondominated solutions

1 100 100
2 1�000 100
3 2�500 100
4 5�000 100
5 10�000 100
6 100�000 1�000

except one, were done using the improvement opera-
tors described in §5. To test the impact of the genetic
algorithm without improvements, we ran a series
of runs on the largest problem, the U.S. 263-node
data set.
To test the effect of running the genetic algorithm

for more iterations, a number of different termination
criteria were considered, as shown in Table 8.
Table 9 presents the results of our experiments with

the genetic algorithm. For the U.S.-based data sets,
m rows of results are given. The first m− 2 rows cor-
respond to cases in which the genetic algorithm ter-
minated when either the maximum allowable number
of generations was reached or 100 consecutive gen-
erations passed without any change in the trade-
off curve. The m − 1 row corresponds to Case 6 of
Table 8 in which we set a large limit on the maxi-
mum number of generations (100,000) and terminated
the genetic algorithm when 1,000 consecutive gener-
ations had passed without a change in the trade-off
curve. The final row summarizes key characteristics
of the optimal solution found using the Lagrangian
procedure outlined above. Recall that the Lagrangian
procedure finds all supported solutions on the trade-
off curve, but does not find any nonsupported but
nondominated solutions. For the European data set,
the first four rows correspond to Cases 1 through 4
outlined in Table 8. Row 5 corresponds to Case 6. For
Row 6, we allowed the genetic algorithm to generate
100,000 generations. Finally, Row 7 summarizes the
best-known results. The last block of results are those
for the large U.S. data set without the use of any of
the improvement operators.
The columns in Table 9 are, for the most part, sim-

ilar to those in Table 6. Columns 4, 5, and 6 sum-
marize the nominal number of generations, the actual
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Table 9 Genetic Algorithm Results
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Sortcap 49 300 100 100 Gen 5�49 100 35 8 4 8 0�199 0�996
1�000 422 100 No Imp 18�93 100 40 10 4 10 0�086 0�227

100�000 2�710 1,000 No Imp 113�16 100 46 11 5 11 0�078 0�227
Optimal 48�59 12

City1990 88 300 100 100 Gen 8�98 100 39 11 2 6 1�680 5�049
1�000 987 100 No Imp 49�56 158 79 17 2 9 1�189 4�033

100�000 13�453 1,000 No Imp 659�88 200 100 20 4 19 0�118 1�537
Optimal 239�12 19

150City 150 300 100 100 Gen 17�17 100 30 9 0 2 5�274 10�544
1�000 666 100 No Imp 47�80 148 74 15 1 6 1�925 6�105

100�000 10�876 1,000 No Imp 641�04 232 116 15 3 14 0�022 0�084
Optimal 569�15 16

150City 150 150 100 100 Gen 28�73 154 74 17 1 4 4�162 6�924
1�000 1�000 Gen 92�07 362 180 28 2 15 0�334 4�688
2�500 2�500 Gen 199�35 430 212 31 2 25 0�028 0�082
5�000 3�866 100 No Imp 298�48 448 222 33 2 30 0�031 0�082

100�000 34�624 1,000 No Imp 2�955�38 694 347 37 2 35 0�033 0�082
Optimal 7�515�62 39

Europe150 150 150 km 100 100 Gen 33�54 182 89 20 1 3 1�264 3�787
1�000 1�000 Gen 113�24 658 329 37 6 19 0�323 3�142
2�500 2�500 Gen 272�36 816 402 41 6 17 0�003 0�008
5�000 3�596 100 No Imp 392�23 830 415 41 7 17 0�003 0�008

100�000 19�662 1,000 No Imp 2�576�82 1�058 525 51 13 25 0�095 2�318
100�000 100�000 Gen 14�481�30 1�114 557 51 30 51 0�002 0�008

Best known N/A 52

USA2000 263 263 300 100 100 Gen 60�05 100 41 12 1 4 11�977 28�960
Big Cities 1�000 1�000 Gen 137�93 172 86 17 4 6 3�158 18�945

2�500 2�500 Gen 257�40 252 124 19 4 6 1�053 6�314
5�000 2�660 100 No Imp 270�61 252 123 19 4 6 1�053 6�314

100�000 21�113 1,000 No Imp 2�199�37 438 219 18 4 14 0�453 6�314
Optimal 118�332�58 19

USA2000 263 Big Cities 263 300 100 100 Gen 4�24 100 34 14 0 2 62�283 63�550
No improvement 1�000 1�000 Gen 43�39 276 139 17 3 4 12�705 50�820

2�500 2�500 Gen 130�08 344 134 20 4 6 6�346 38�074
5�000 5�000 Gen 283�37 344 143 22 5 9 3�524 31�710

10�000 7�712 100 No Imp 451�61 412 206 19 5 13 5�215 25�463
100�000 22�439 1,000 No Imp 1�511�09 490 244 21 5 11 1�154 12�683
Optimal 118�332�58 19

number of generations and the reason the algorithm
terminated. Column 8 gives the final population size
while Column 9 provides the number of nondomi-
nated solutions found. The final population size will
typically be about twice the number of nondominated
solutions provided the latter number exceeds 50.

Column 12 reports the number of solutions found by
the genetic algorithm that had the same total cover-
age as one of the optimal supported solutions. For
example, for the 49-node Sortcap data set, the genetic
algorithm found 4 solutions after 100 generations that
had the same total coverage as one of the 12 optimal
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supported solutions. Columns 10, 11, 13, and 14 of
Table 9 are similar to Columns 9, 10, 12, and 13 of
Table 6.
In many cases, the number of nondominated solu-

tions found by the genetic algorithm greatly exceeds
the optimal number of supported solutions found
by the Lagrangian procedure. For example, for the
150City data set with a coverage distance of 150 miles,
when the genetic algorithm terminated after only
100 generations, it had found 74 nondominated solu-
tions compared to 39 supported solutions in the opti-
mal trade-off curve. After 3,866 generations (which
took about five minutes of time), the genetic algo-
rithm had found 222 nondominated solutions. The
Lagrangian algorithm for this problem took more than
two hours to find 39 optimal supported solutions.
To illustrate the quality of the genetic algorithm

solutions further, Figure 6 compares the genetic algo-
rithm trade-off curve to the optimal solutions for the
150City data set with a coverage distance of 300 miles
after 100 and 10,876 generations. While the solution
after 100 generations differs significantly from the
optimal curve on visual inspection, the solution after
10,876 generations does not appear to differ appre-
ciably from the optimal curve except for the fact that
the curve from the genetic algorithm includes many
nonsupported nondominated solutions.
Finally, Figure 7 shows the progress of the algo-

rithm for this problem over the first 10,876 gener-
ations. Values shown are for every twentieth gen-
eration. The graph plots the number of consecutive
generations with the same trade-off curve on the
left-hand axis. On four occasions, beginning around

Figure 6 Optimal and Heuristic Trade-off Curves for the 150City
Problem with a Coverage Distance of 300 Miles

Optimal vs. genetic algorithm—150City data set, 300 miles
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generation 4,700, this exceeded 800 before attaining
the termination criterion of 1,000 at generation 10,876.
The right-hand axis plots the population size and
the number of nondominated solutions. Both values
increase rapidly through the first 3,000 generations
and then begin to stabilize.

7. Managerial Insights and
Conclusions

In this paper, we have extended a nonlinear inte-
grated location-inventory model to incorporate a
measure of customer service quality. Key costs repre-
sented by the model include fixed DC location costs,
working and safety stock costs at the DCs, fixed and
variable shipment costs from the plant to the DCs,
and transportation costs from the DCs to the cus-
tomers. Customer service is measured by the fraction
of all customer demands that are within a specified
distance or service standard of the DC to which they
are assigned.
Through tests of the model on data sets rang-

ing in size up to 263 demand nodes, we showed
that it is important for a company to find the right
trade-off between supply chain cost and service. The
cost difference between the cost-minimization solu-
tion and the service-maximization solution can be
quite large. In our tests, the service-maximization
solution ranged from 6 to 20 times bigger than
the cost-minimization solution. We also showed that
significant improvements in customer service can
often be achieved at relatively little cost. While this
often entails locating additional DCs, the cost of the
incremental facilities is largely offset by reduced out-
bound transportation costs.
Furthermore, we found that it can be very time

consuming to find the optimal cost-service trade-off
curve for large problem instances. In this case, our
proposed genetic algorithm can be a very good alter-
native to solve the problem because it can generate
high-quality solutions quickly. Furthermore, the num-
ber of nondominated solutions found by the genetic
algorithm greatly exceeds the optimal number of sup-
ported solutions found by the Lagrangian procedure.
We believe that similar algorithms can be developed
for more general supply chain design problems.
As indicated earlier, many firms maintain different

service levels for different types of customers (e.g.,
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Figure 7 Progress of the Genetic Algorithm Over 10,876 Generations
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2-hour service, 8-hour service, and 24-hour service).
We are exploring ways of extending the model to
examine the trade-off between cost and service for
several different classes of customers.

References
Badri, M. A., A. K. Mortagy, C. A. Alsayed. 1998. A multi-objective

model for locating fire stations. Eur. J. Oper. Res. 110 243–260.
Belardo, S., J. Harrald, W. A. Wallace, J. Ward. 1984. A partial cov-

ering approach to siting response resources for major maritime
oil spills. Management Sci. 30 1184–1196.

Church, R. L., C. S. ReVelle. 1974. The maximal covering location
problem. Papers Regional Sci. Assoc. 32 101–118.

Cohon, J. L. 1978. Multiobjective Programming and Planning. Aca-
demic Press, New York.

Current, J., H. Min, D. Schilling. 1990. Multiobjective analysis of
facility location decisions. Eur. J. Oper. Res. 49 295–307.

Daskin, M. S. 1995. Network and Discrete Location: Models, Algorithms,
and Applications. John Wiley and Sons, New York.

Daskin, M. S. 2004. SITATION—Facility location software. Depart-
ment of Industrial Engineering and Management Sciences,
Northwestern University, Evanston, IL. Available at http://
users.iems.nwu.edu/∼msdaskin/.

Daskin, M. S., E. Stern. 1981. A hierarchical objective set cover-
ing model for EMS vehicle deployment. Transportation Sci. 15
137–152.

Daskin, M., C. Coullard, Z. J. Shen. 2002. An inventory-location
model: Formulation, solution algorithm and computational
results. Ann. Oper. Res. 110 83–106.

Fernandez, E., J. Puerto. 2003. Multiobjective solution of the unca-
pacitated plant location problem. Eur. J. Oper. Res. 145 509–529.

Heller, H., J. L. Cohon, C. S. Revelle. 1989. The use of simulation in
validating the multiobjective EMS location model. Ann. Oper.
Res. 18 303–322.

Hopp, W., M. L. Spearman. 1996. Factory Physics: Foundations of
Manufacturing Management. Irwin, Chicago, IL.

Hultz, J. W., D. D. Klingman, G. T. Ross, R. M. Soland. 1981. An
interactive computer system for multicriteria facility location.
Comput. Oper. Res. 8 249–261.

Jayaraman, V. 1999. A multi-objective model for a capacitated ser-
vice facility logistics problem. Internat. J. Physical Distribution
Logist. Management 29(1) 65–81.

Lee, S. M., G. I. Green, C. Kim. 1981. A multiple criteria model for
the location-allocation problem. Comput. Oper. Res. 8 1–8.

Ma, Y.-H., G. R. Wilson. 2002. Neighborhoods: A new service parts
stock plan. INFORMS Annual Meeting, San Jose, CA.

Nahmias, S. 1997. Production and Operations Management, 3rd ed.
Irwin, Chicago, IL.

Nozick, L., M. Turnquist. 2001. Inventory, transportation, service
quality and the location of distribtuion centers. Eur. J. Oper.
Res. 129 362–371.

ReVelle, C. S., J. L. Cohon, D. Shobrys. 1981. Multiple objectives in
facility location: A review. Organisations: Multiple Agents with
Multiple Criteria. Lecture Notes in Economic and Mathematical Sys-
tems, Vol. 190. Springer-Verlag, Berlin, Germany.

Ross, G. T., R. M. Soland. 1980. A multicriteria approach to location
of public facilities. Eur. J. Oper. Res. 4 307–321.

Sabri, E. H., B. M. Beamon. 2000. A multi-objective approach to
simultaneous strategic and operational planning in supply
chain design. OMEGA 28 581–598.



Shen and Daskin: Trade-offs Between Customer Service and Cost in Integrated Supply Chain Design
Manufacturing & Service Operations Management 7(3), pp. 188–207, © 2005 INFORMS 207

Schilling, D. A. 1980. Dynamic location modeling for public-sector
facilities: A multicriteria approach. Decision Sci. 11(4) 714–724.

Shen, Z. J. 2000. Efficient algorithms for various supply chain
problems. Ph.D. dissertation, Department of Industrial Engi-
neering and Management Sciences, Northwestern University,
Evanston, IL.

Shen, Z. J., C. Coullard, M. Daskin. 2003. A joint location-inventory
model. Transportation Sci. 37 40–55.

Shu, J., C. P. Teo, Z. J. Shen. 2005. Stochastic transportation-
inventory network design problem. Oper. Res. 53 48–60.

Solanki, R. 1991. Generating the noninferior set in mixed biobjective
linear programs: An application to a location problem. Comput.
Oper. Res. 18 1–15.

Stern, G. 1995. GM expands its experiment to improve Cadillac’s
distribution, cut inefficiency. Wall Street J. (February 8).


