Time Dependent Vehicle Routing
Problems: Formulations, Properties and
Heuristic Algorithms

CHRYSSI MALANDRAKI

Roadnet Technologies, Inc., Timonium, Maryland 21093

MARK S. DASKIN

Northwestern University, Evanston, Illinois 60208

The time dependent vehicle routing problem (TDVRP) is defined as follows. A vehicle fleet of
fixed capacities serves customers of fixed demands from a central depot. Customers are
assigned to vehicles and the vehicles routed so that the total time of the routes is minimized.
The travel time between two customers or between a customer and the depot depends on the
distance between the points and time of day. Time windows for serving the customers may
also be present. The time dependent traveling salesman problem (TDTSP) is a special case of
the TDVRP in which only one vehicle of infinite capacity is available. Mixed integer linear
programming formulations of the TDVRP and the TDTSP are presented that treat the travel
time functions as step functions. The characteristics and properties of the TDVRP preclude
modification of most of the algorithms that have been developed for the vehicle routing
problem. Several simple heuristic algorithms are given for the TDTSP and TDVRP without
time windows based on the nearest-neighbor heuristic. A mathematical-programming-based
heuristic for the TDTSP without time windows using cutting planes is also briefly discussed.

Test results on small, randomly generated problems are reported.

INTRODUCTION

The time dependent vehicle routing problem
(TDVRP) is defined as follows. A vehicle fleet of
fixed capacities has to serve customers of fixed
demands from a central depot. Customers must be
assigned to vehicles and the vehicles routed so that
the total time spent on the routes is minimized.
The travel time between two customers or between
a customer and the depot depends on the distance
between the points and the time of day. Time win-
dows for serving the customers may also be given
as well as a maximum allowable duration of each
route (work day of the driver). The time dependent
traveling salesman problem (TDTSP) is a special
case of the TDVRP in which only one vehicle of
infinite capacity is available.

The TDVRP extends the vehicle routing problem
(VRP) (CaRisToFIDES®: ¥ 12 and BobpIN et all™) to
account for urban congestion. Similarly, the TDTSP
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is an extension of the traveling salesman problem
(TSP) (LAWLER et al.**l and CurisToFDEs!'!!). The
VRP considers the cost or travel time between two
points as known and constant. Usually the VRP
assumes that the costs or travel times are a scalar
transformation of distances. For real-life applica-
tions some composite or modified measure of cost
may be used (FISHER et al.??] and BELL et al.l’!).
The assumption that costs are deterministically
known and constant is an approximation of actual
conditions. In a congested urban environment, the
travel time between two points is usually not a
function of distance traveled alone since speeds are
not constant. Fluctuations in traffic density may
cause fluctuations in travel speed that result in
variations in travel times. One component is the
variation due to accidents, weather conditions or
other random events. Another component of this
variation, which may cause travel times to increase
dramatically during rush hours, is the temporal
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variation that results from the hourly, daily, weekly
or seasonal cycles in the average traffic volumes.

If the major variation in travel times results from
the time-of-day variation, the travel times between
two points may be represented by a deterministic
function of the distance between the two points and
also the time of day the travel takes place. If we
ignore the time-of-day dependence of travel times
we may get a suboptimal solution, with a different
route structure and different number of vehicles
needed than would result from the time dependent
optimal solution. Also, we may obtain a solution
that violates time windows or maximum permissi-
ble times for each route.

As a generalization of the TSP, the TDVRP be-
longs to the class of NP-complete problems (LENSTRA
and RiNNooY Kant?®)) for which it seems unlikely
that polynomial-time exact algorithms can be de-
veloped (GAREY and JOHNSON,'*!! JOHNSON and
PAPADIMITRIOU®Y),

Considerable research has been devoted to the
TSP (DaNTZIG, FULKERSON and JOHNSON,!% 201 LN
and KERNIGHAN,*S! HELD and Kagp,35-37]
CaRPANETO and TorH,®) CROWDER and PADBERG,!7]
BaLas and CHRISTOFIDES,*! Lawler et al.*%), the
multiple TSP (GavisH and SRIKANTH?%), and the
VRP (CLARKE and WRIGHT,'®! GILLETT and
MILLER,??) FIsHER and JAIKUMAR,>*] CHRISTOFIDES,
MinGozzl and ToTH, 313 GavisH and GRAVES,27 28]
MAGNANTL*") LAPORTE, NOBERT and DESROCHERS, 4 2!
GOLDEN and Assap(31l),

PicARD and QUEYRANNE(®2?! examine the TSP with
costs associated with each node depending not only
on the node that precedes it but also on its position
(time) in the sequence. Fox, GAVISH and GRAVES?2?!
give a new formulation of the previous time depen-
dent TSP. They assume that the cost of traveling
between city i and city j depends on the time
period and that the travel time between any two
cities is one time period. The time dependent TSP
discussed in these papers!?® %2 is conceptually the
closest to the TDTSP presented here. In our model,
the assumption that the travel time between any
two cities is one time period is relaxed and the
travel times depend on the time of day and not on
the sequence of node visitations for both the TDTSP
and the TDVRP.

The TSP and VRP with time windows are exam-
ined by BAKER,?’ BAKER and SCHAFFER,?!
DESROSIERS, SoumIis and DESROCHERS,?!]
SoLoMoN,[5% 54 and KoLEN et al.*!! SoLoMoN and
DESROSIERS °5) survey several types of vehicle rout-
ing problems with time windows.

The remainder of this paper is organized as fol-
lows. The TDVRP is formulated mathematically in

the next section with the TDTSP as a special case.
Section 2 discusses properties of the travel time
functions and problem characteristics. Simple
heuristic algorithms for the TDTSP and the TD-
VRP without time windows based on the nearest-
neighbor heuristic are described in Section 3. A
mathematical-programming-based heuristic for the
TDTSP without time windows is presented in Sec-
tion 4 and test results of the heuristics on randomly
generated problems in Section 5. Section 6 summa-
rizes the paper and presents conclusions and direc-
tions for future work.

1. PROBLEM FORMULATION

A DIRECTED graph G(V, E) is given with V the set of
nodes and E the set of directed links. A directed
link is represented by an ordered pair of nodes (i, j)
in which i is called the origin and j is called the
destination of the link. The network is assumed
complete and an n X n time dependent matrix C(¢)
= [c,,(¢)]is also given representing the travel times
on link (i, j) € E, where ¢,(t,) is a function of the
time of day, ¢,, at the origin node i of the link.

The TDVRP is formulated as a mixed integer
linear programming (MILP) problem for the case in
which the travel time, ¢, (¢,), is a known step func-
tion of the time of day, ¢,, at the origin node i. In
this way, the day is divided into time intervals.
Once the time interval during which the salesman
starts traversing link (7,j) is known, the travel
time of traversing link (Z, j) is a known constant.

The problem is formulated on an expanded net-
work. Each link (i, j), from node i to node j, is
replaced by M, parallel links from i to j where
M,, is the number of distinct time intervals consid-
ered in the step function c,(¢,) representing the
travel time for the link. The number M,, may differ
from link to link. For clarity of exposition in the
following formulation we simply denote the number
of time intervals by M instead of M,, as if the
number of time intervals is the same for all physi-
cal links in the network. A travel time step function
for link (i, j) with three time intervals is shown in
Figure 1.

The formulation concerns a TDVRP with exactly
K vehicles that includes time windows and permits
waiting at the customer nodes. It considers collec-
tions from all the customers but it can also be used
for deliveries. The total route time (travel time plus
service time plus waiting time) is minimized. The
starting time from the depot is given. Each cus-
tomer is served by one visit of one vehicle. Time
windows are included that express a single time
interval during which visiting a node is permitted.
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’It‘.ravel ,=0fori=1,n+1,...,n+K
olfr?iisk 4 T = upper bound for time interval m for link
(ij) (i, j)—see Figure 1

o~
|

= the starting time from the depot node 1
weight (or volume) capacity of vehicle &

: : = weight (or volume) to be collected at cus-
C'-—— tomer i;d, =0fori=1,n+1,...,n + K

2
cij .................. :

&
Lo

y

) : : B; = a large number
Cij ................... T PPN P 32 —a large number
B = max, b, = capacity of largest vehicle
: : : > L, = earliest time that the salesman can arrive at
Ti.(i) Ti% Tlﬁ Tﬁ Time node i
of day U, = latest time that the salesman can arrive at

Fig. 1. Travel time step function for link (i, j) with three time node i

intervals (M,, = 3). o )
Decision variables

Multiple time windows can also be modeled but this 1 ifany .Vehicle tr'avels f:lirectly from
will make the formulation more complicated. We node i to node j starting from
assume: Y i during time interval m

1. The travel time from node { to node j during 0 otherwise

. . L i f hicl de j
time interval m is independent of the type of 7 de}?a;lttuz“ertlm;e © ;;nlya;/e 1ct€;lf:lor:)1rno eaJI to
vehicle. This is a reasonable assumption in an w, = welght for volume) larger tha equ
urban environment. that carried by a vehicle when departing from

L
Il

2. The collection (or delivery) time for each vehicle node j.
is independent of the type of vehicle and de- With this notation the TDVRP may be formu-
pends only on the customer. This is also a rea- lated as follows:
sonable assumption.
These assumptions permit us to formulate the TD- X
VRP without considering which vehicle visits a Min ; Eni (1)
node. o
The depot node is also expanded as follows. Con- subject to
sider node 1 as the starting depot; that is, delete all
the inbound links to node 1. Augment the network n M
by K nodes (n + 1,...,n + K). These nodes corre- Y Yar=1 (j=2,....,n+K) (2)
spond to returning depot nodes for each of the K icime1
vehicles respectively. Delete all outbound links from e
nodes n + 1,...,n + K and all the links intercon- n+kK M
necting the depot nodes. Thus all vehicles start Yy x) =1 (i=2,...,n) (3)
from the depot node 1 and each vehicle has to J=2 m=1
return to its specified return depot. Also set c, (¢,) I
=c¢,(¢,) for every node i=2,...,n and j= n M
n+1,...,n+K. Y Y xr=K 4
The notation used in the formulation is summa- J=2m=1
rized below: t, =t (5)
Constants t,—t —Ba" >c" +c,— B, (6)
n = number of nodes including the depot ) .
M = number of time intervals considered for each (i=1...,n;j=2,....,n + K;
link itjsm=1,...,M)
K = number of vehicles
c;; = travel time from node i to j if starting at [ t, + Byx} <T)7 + By (7
during time interval m; ¢} = « for all i, m t,— T 1xm > 0 (8)

c, = service time at node i (e.g., delivery time);
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(i=1,...,n;5=2,...
tFjm=1,..., M)

Li+ec<t,<U+ec, (i=1,...,n+K) (9)

12 12 13

,hn+ K;

wj—wl—B§x$>dj—B (10)
m=1

(i=1,...,n;j=2,....,n+K;i +))

w, = (11)
w,,, <b, (k=1,...,K) (12)
x; =0orl foralli,j,m (13)
t, =0 for all ¢ (14)
w, >0 for all ;. (15)

The objective function (1) minimizes the total
route time of all vehicles (travel time plus service
time at all nodes plus the waiting time at all nodes).
Constraints (2) to (4) ensure that each customer is
visited exactly once and exactly K vehicles are
used. If we want to permit less than K vehicles to
be used we can replace constraint (4) by constraint
L ,EY 1 x <K and modify constraints (2) to
read Y7 (X, (x/; <1 for j=n+1,...,n+K.
Equivalently, we can replace constraint (4) by con-
straint £72 XY _ x" = K to allow a vehicle to go
directly from the starting depot 1 to its own return
depot (after including links (1,n + k), for % =
1,..., K in the network).

Constraint (5) sets the starting time from the
depot node 1 equal to ¢ for all vehicles. If we omit
constraint (5) the starting time of all the vehicles
will be the same but it will be a variable deter-
mined by the optimization. To permit vehicles to
start at different times, we split the starting depot
node 1 into K nodes, one for each vehicle, in a
manner similar to that in which the return depot
was expanded, and use a different variable for the
starting time of each vehicle.

Constraints (6) compute the departure time at
node j (GOLDEN, MAGNANTI and NGUYEND®2]), The
objective function (1) ensures that constraints (6)
apply with equality when x;; = 1 except in cases
when waiting at j decreases the objective function
value. This point will be discussed again in Section
2. If we want constraints (6) to apply always with
equality (no waiting permitted) we must add the
following constraints

t;—t, +Bx;<c] +c +B,

(i=1,...,n;j=2,...,n+K;

i*j;m=1,...,M) (16)

(‘npyrighf © 2001 Al Righfq Reserved .-

that operate in a manner similar to constraints (6).
The inclusion of constraints (16) is not indicated
when time windows are present. We can set the
large number B; equal to the total route time of a
set of feasible vehicle tours plus max, , ¢ plus
max,c,.

The temporal constraints (7) and (8) ensure that
the proper parallel link m is chosen between nodes
i and j according to the departure time from node i.
We want to model the following constraints

if ) = 1then T)7"' < ¢, < T)7 forall i, j, m.
This means that ¢, belongs to the time interval m
defined by the above inequalities if the link used in
leaving node i corresponds to the same time inter-
val m. We can set the large number B, equal to the
latest possible return time of a vehicle. If for some
particular i,j and m, x,; =1 then the relevant
link corresponding to the mth interval is used. If
x,; = 0 though, the relevant interval is not m and
constraints (7) and (8) are not binding. Note that
consecutive time intervals share a boundary point
since all time intervals are considered closed. Thus,
if t, = T7 either x;] or x7" ! may be equal to one.

Constraints (9) impose the time windows that are
defined in terms of the arrival times at the nodes
while the variables ¢, for i = 1,...,n + K repre-
sent the departure times from the nodes. Inclusion
of time windows may actually facilitate the solution
by excluding some time interval choices and de-
creasing the total number of links in the expanded
network.

Constraints (10) to (12) impose the capacity re-
strictions. Constraint (11) states that all vehicles
leave the depot node 1 empty. Constraints (10)
ensure that the weight carried by the vehicle leav-
ing customer j is at least equal to the weight when
leaving the previously visited customer i plus the
weight of the commodity picked up at customer j.
Constraints (12) ensure that the capacity of each
vehicle is not surpassed.

The formulation does not require subtour elimi-
nation (SE) constraints because both constraints (5)
and (10) operate as (separate) SE constraints. These
constraints are a generalization of the following SE
constraints for the TSP (MILLER, TUCKER and
ZEMLIN():

u,—u,+nx, <n-1 Z2<i#j<n)
where x,, =1 if link (,) is used and x,, =0
otherwise, and the u, for i = 2,..., n are arbitrary
real numbers.

Restrictions on the duration of any vehicle tour
may easily be imposed by adding the constraint




t, ., < T for all & where T¢™ is the latest time
vehicle £ must return to the depot.

The TDVRP formulation can be easily modified to
model both deliveries from the depot and collections
from the customers by the same vehicle of a nonho-
mogeneous commodity for the case where all the
vehicles have the same capacities B. This and other
extensions of existing formulations of the VRP to
model the TDVRP can be found in MALANDRAKI.!“®!

The TDTSP is obtained from the TDVRP formu-
lation as a special case if we set K = 1 and omit the
capacity constraints (10) to (12) and (15). The MILP
formulation is very large involving many binary
variables and a large number of temporal and ca-
pacity constraints.

2. PROPERTIES AND CHARACTERISTICS

2.1. Properties of the Travel Time Functions

In reality, travel times change continuously as a
function of time and not in discrete jumps. When
waiting is permitted at the nodes, the step func-
tions used in the formulation presented in Section 1
will generally behave as if they were piecewise
linear continuous functions when the travel time in
period m + 1 is less than that in period m.

To illustrate this, consider finding the time de-
pendent shortest path (a shortest path with time
dependent travel times) from node 1 to node 3 in
Figure 2a. Figure 2b gives the travel time function
for link (2, 3). The scales of the vertical and hori-
zontal axes are identical. If the traveler is ready to

O——@——0
(@

Travel

times 4

of link

(2,3) A B

»

Time of day

)

Fig. 2. (a) Example network. (b) Travel time step function.
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depart from node 2 at any time £, such that a <t,
< b, it is advantageous to wait and depart at time
b. Thus, the effective travel time function for link
(2, 3) is given by the piecewise continuous function
P-A-C-Q instead of the step function P-B, C-Q.

In the presence of time windows (constraint (9)),
scenarios can be constructed in which it is infeasi-
ble for the model to allow waiting at a node by
implicitly using the more realistic continuous travel
time function, even if waiting would decrease the
objective function. Also, when the travel time func-
tion increases from period m to period m + 1, the
effective travel time functions remain discontinu-
ous. These and related properties of the travel time
functions are discussed in Malandraki.*®! Finally,
we note that the heuristics for the TDVRP and
TDTSP without time windows presented below as
well as the dynamic programming algorithm for the
TDTSP may all use continuous (nonlinear) travel
time functions. However, direct extension of short-
est path or dynamic programming TSP algorithms
to include time dependence is not valid for decreas-
ing step functions or decreasing continuous travel
time functions with a slope smaller than minus
one, if waiting is not permitted. The travel time
step functions are needed in the cutting-plane-based
heuristic for the TDTSP presented in Section 4.

2.2. Problem Characteristics

The TDVRP is an asymmetric problem. Suppose
that the travel time functions are symmetric, that
is, the travel time function for link (Z, ;) is the same
as the travel time function for link (j, 7). This does
not imply that two tours that traverse the same
physical links but in the opposite direction have the
same total tour times.

Another characteristic of the TDVRP is that the
k-opt exchange or insertion heuristics cannot be eas-
ily extended to solve the problem. The k-opt ex-
change solution technique tries to improve a solu-
tion by exchanging % links while retaining feasibil-
ity. When the method is applied to the symmetric
TSP only the costs of the exchanged links need to
be taken into consideration. When the method is
applied to the TDTSP though, the travel times of
more links may change either because the traversal
direction changes or because the starting time at
the origin node of the link changes. Consequently,
the application of the method becomes expensive
computationally. Similarly, the application of inser-
tion heuristics is expensive because the travel times
of links subsequent to the inserted link may change.

Two properties (LARSON and ODONI*?)) of the op-
timal solution of the Euclidean TSP (where travel
times are Euclidean) do not extend to the TDTSP.
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These are: (1) the fact that the optimum traveling
salesman tour does not intersect itself, and (2) the
convex hull property.

The “Euclidean” TDTSP is defined as follows.
Without loss of generality we assume that the same
time periods are applicable for all links, that is,
M,, = M for all i, j. We also assume that the travel
times on the links for each time period separately
are Euclidean; that is, each network defined only
by the links of the same time period is Euclidean.
Note that each of these networks represents “posi-
tions” of nodes during a particular time period and
the links represent travel times that differ from
period to period. Hence, the relative positions of
nodes may “change” for different time periods.

The convex hull is not well defined for the
“Euclidean” TDTSP. Since the “positions” of the
nodes change, the convex hull may differ from pe-
riod to period. But even when the points defining
the convex hull as well as their order of appearance
on the hull are the same for all periods, the two-
period, four-node example of Figure 3 shows that
neither of the above properties hold for the
“Euclidean” TDTSP. Time is measured in hours
and the time periods are the same for all the links.
The first period (Fig. 3a) applies for 0:00 < ¢, < 6:00
for all nodes i, where ¢, is the departure time from
origin node i. The second time period (Fig. 3b)
applies for ¢, > 6:00 for all i. The starting node is
node 1 and the starting time is 0:00. The coordi-
nates are shown next to the figures. The numbers
next to the links denote the travel times which are
the same in both directions.

There are six possible tours for a four-node net-
work with a given starting node. The tour with the
minimum total travel time is 1-2-4-3-1 with a total
travel time of 17.98 (rounded to the second digit).
The shortest tour crosses itself and violates the
convex hull property. Since the convex hull prop-
erty may be violated by the optimal solution of the
TDTSP, the convex hull heuristic cannot be ex-
tended to solve the TDTSP.

The “Euclidean” TDTSP is a restrictive case of
the problem. Since the properties do not hold for
the “Euclidean” TDTSP, they do not hold for the
general TDTSP.

3. HEURISTIC ALGORITHMS FOR THE TDTSP
AND TDVRP
THE CHARACTERISTICS of the TDTSP and TDVRP
discussed in Section 2, preclude the efficient exten-
sion of most of the heuristics for the nontemporal
problem. This section presents simple heuristic al-
gorithms for the TDTSP (Section 3.1) and the TD-
VRP (Section 3.2) without time windows. The algo-

t, < 6:00 V¥-node i

Node X Y
1 0.00 0.00
2 240 -1.80
3 3.65 -6.65
4 0.00 -5.00

(a) First time period.

=

t, >6:00 ¥-node i

Node X Y
1 0.00 0.00
2 3.55 1.80
3 315 -520
4 -1.55  -6.60

(b) Second time period.

Fig. 3. Example for TDTSP convex hull properties. Starting
node: 1. Starting time: 0:00. Numbers next to links denote travel
times.

rithms are based on the nearest-neighbor (greedy)
heuristic for the TSP (Bodin et al.’)) that can easily
be extended to account for time dependence.

3.1. Heuristic Algorithms for the TDTSP

The nearest-neighbor heuristic is extended in a
straightforward manner to solve the TDTSP with a
given starting time and without considering wait-
ing and time windows. When step functions are
used, the algorithm must find the proper parallel
link every time a physical link is examined. If the
parallel links are examined sequentially, this algo-
rithm (heuristic NN1) requires O(n2M) time in the
worst case. A variation of the heuristic is to apply
the algorithm n — 1 times with each node (apart
from the depot) to be visited second. The best solu-
tion, among the n — 1 solutions, is selected. Using
this extension (heuristic NN2), the solution tour
can be found in O(n3M) time.

Since it is well known that the nearest-neighbor
heuristic does not give good solutions for the TSP,

Copyright © 2001 All Rights Reserved



we describe next a variation of the nearest-neigh-
bor TDTSP heuristic that attempts to ameliorate
the results of the greedy approach. It selects the
next node to be visited randomly according to a
user-specified probability distribution. Similar
probabilistic approaches have been used before. For
example, FEO and BARDI??! use it in a probabilistic
set covering heuristic. The probabilistic, nearest-
neighbor heuristic (NNR for Nearest-Neighbor
Random) may be described as follows:

Step 1. Start from the depot at the given starting
time.

Step 2. Sort in nondecreasing order up to & feasible
links with the & best times of traversal that
originate at the last-visited node and termi-
nate at a nonvisited node and do not violate
the temporal requirements (i.e., a feasible
parallel link is chosen). From this list, se-
lect one link randomly according to a given
probability distribution. Add this link to the
tour.

Step 3. Repeat Step 2 until all nodes are visited.
Then return to the depot from the last node.

Step 4. Repeat Steps 1, 2 and 3 L times (with a
new starting random number each time)
and select the best tour.

For the implementation of this algorithm L = n
and & = 3 were used. The k£ best elements out of n
can be sorted in O(kn) time when insertion sorting
is used (AHO, HoprcrorFT and ULLMAN!!!). Hence,
using the NNR heuristic the solution can be found
in O(Ln?(M + k)) time in the worst case and for
L=n in O(n¥ (M + k)) time. Since L is a user-
specified parameter, an important feature of the
probabilistic approach is that a better solution may
be found if more computational time is used.

3.2. Heuristic Algorithms for the TDVRP

3.2.1. Sequential Route Construction TDVRP
Heuristic

In this heuristic, a new vehicle is introduced
when no more customers can be accommodated
using the current vehicle.

Step 1. Start from the depot at the given starting
time with the first available vehicle in the
input file.

Step 2. Find a nonvisited node such that the link
from the last-visited node to this node has
the smallest time of traversal and does not
violate the temporal requirements and the
capacity restrictions for the current vehicle.
Add this node to the tour of the current
vehicle.
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Step 3. Repeat Step 2 until all nodes are visited or
the current vehicle is filled and return to
the depot. If all nodes are visited, stop.
Otherwise, if no more vehicles are available
indicate insufficient capacity and stop. If
more vehicles are available start from the
depot at the given starting time with the
next available vehicle in the input file. Go
to Step 2.

The heuristic may indicate insufficient capacity
when in fact a feasible solution does exist. It will
always find a feasible solution, though, if n — 1
vehicles are available, each with capacity larger
than or equal to the largest customer demand.

Two versions of the last heuristic have been coded.
One version examines the vehicles from first to last
in the input file and the other from last to first
vehicle. Obviously the two versions coincide for a
homogeneous fleet of vehicles.

Using this heuristic, a solution can be found in
O({(n + K)nM) time in the worst case, where K is
the number of available vehicles and parallel links
are examined sequentially. Since each customer is
served by one vehicle, at most n — 1 vehicles will
be used and the worst time performance is bounded
by O(n?M) where K has been replaced by n.

3.2.2. Simultaneous Route Construction TDVRP
Heuristie

In this heuristic, a new vehicle is introduced if
doing so leads to the use of the shortest feasible
link at any stage of the algorithm. All available
vehicles may be used even if the total available
capacity greatly exceeds the needed capacity.

Step 1. Start from the depot at the given starting
time with the first available vehicle in the
input file.

Step 2. Find a nonvisited node such that the link
from the last-visited node of any used vehi-
cle (or the depot if there are still unused
vehicles) to this node has the smallest travel
time and does not violate the temporal re-
quirements and the capacity restrictions of
the corresponding vehicle. Add this node to
the tour of the corresponding vehicle.

Step 3. Repeat step 2 until all nodes are visited or
no more capacity is available. If all nodes
are visited, return to the depot for each
used vehicle and stop. Otherwise, indicate
insufficient capacity and stop.

This heuristic also may indicate infeasibility
when the problem does have a feasible solution.
Since all vehicles may be used even if there is no
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need to do so, the use of this heuristic should be
avoided when the total capacity is much larger
than the total demand. Using this heuristic, a solu-
tion can be obtained in O(n2KM) time in the worst
case. Both TDVRP heuristics evaluate a solution on
the basis of its total route time. However, other
factors may also be important; e.g., fixed costs for
the vehicles, the number of vehicles used, labor
costs including overtime, and the route times of the
individual tours, none of which are considered here.

Additional variations of these heuristics are pos-
sible. For example, the link to be included in a
vehicle route can be selected randomly as in the
probabilisitc TDTSP heuristic. Also, for a nonhomo-
geneous fleet, the next vehicle to be used can be
selected randomly. Repeated execution of the prob-
abilistic heuristic can give us a set of solutions from
which to choose the preferred solution. Another
variant would be to penalize links from the de-
pot (i.e., the introduction of new vehicles) using a
constant or multiplicative penalty term. A probabil-
istic heuristic for the TDVRP with time windows
that includes waiting and considers n — 1 identical
vehicles to be available can be found in
MALANDRAKTI.*®]

No polynomial-time heuristic can provide perfor-
mance guarantees for the TSP when the triangle
inequality does not hold unless there exists an
exact polynomial-time algorithm for the problem
(JOHNSON and PAPADIMITRIOUM®). Since we do not
assume that the triangle inequality holds for the
TDVRP the above applies to the heuristics pre-
sented.

4. CUTTING PLANE HEURISTIC FOR THE TDTSP

THE TDTSP with time windows and a given start-
ing time can be solved using dynamic programming
(DP) by extending the DP algorithm for the TSP
(BELLMAN®! and Held and Karp'®"). The travel time
functions may then be continuous or step functions
if waiting is allowed before departing from a node.
If waiting is not allowed, the DP algorithm cannot
be applied for functions that may result in earlier
arrival at a destination when departing later from
the origin. Such functions include discontinuous
decreasing functions or decreasing functions with a
slope smaller than minus one. The DP approach for
the TSP is of limited value due to the exponential
size of its space and time requirements. It may
compare well though at this point with other exact
algorithms for the TDTSP both in the maximum
size of the problems solved and in the computa-
tional times.

A cutting plane heuristic algorithm for the
TDTSP with a given starting time from the depot
and without time windows is briefly described in
this section, based on the MILP formulation for the
TDTSP presented in Section 1. The algoithm does
not use all the constraints in the formulation but
adds the temporal constraints only as needed. Cut-
ting plane constraints, not included in the formula-
tion, are also used. A preparatory phase precedes
the application of the algorithm and excludes links
that cannot participate in an optimal solution. Both
the DP approach and the cutting plane algorithm
are described in detail in Malandraki.®!

Figure 4 presents a flowchart of the TDTSP algo-
rithm which solves an LP relaxation of the TDTSP
formulation that includes the assignment con-
straints but not the temporal constraints. This so-
lution may produce subtours. Constraints (6) oper-
ate as SE constraints. They correspond to the
Miller-Tucker-Zemlin®% constraints for the TSP
which are weaker (Wong!®®!) than the usual SE
constraints for the TSP (introduced by Dantzig,

INITIALIZATION

y
SOLVE LP RELAXATION
USING SIMPLEX

: '

& STRONG TEMPORAL CONSTR. UPDATE UPPER BOUND

! w1
{STRONG CONSTR. ADDED?>——b SOLVE LP USING
DUAL SIMPLEX

J' NO

ADD TEMPORAL CONSTRAINTS
OF FORMULATION |
l YES SOLVE LP USING
(TEMPORAL CONSTR. ADDED? DUAL SIMPLEX

!_. ADD STRONG SE CONSTRAINTS UPPER-BOUNDING HEUR,;

NO
LP SOLUTION CHANGED NO
AFTER LAST ADDITION OF END OF
STRONG CONSTRAINTS? HEURISTIC
YES
A4
UPPER-BOUNDING HEURISTIC;
UPDATE UPPER BOUND
i AT
YES Z'= upper bound
@ OPTIMUM FOUND Z = lower bound

Fig. 4. Flowchart of phase 1 of TDTSP algorithm.
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Fulkerson and Johnson??l) that extend for the
TDTSP as follows.

M
XY X ar<Isi—-1 (17)

1€8 jeSm=1

where S is the node set of a subtour and [S] is the
cardinality of S.

Constraints (17) are much tighter than con-
straints (6). Only those constraints that are vio-
lated in the last LP solution are identified and
added to the relaxation. The problem of identifying
violated strong SE constraints for the TDTSP can
be reduced (Malandraki®®!) to the problem of iden-
tifying violated SE constraints for the symmetric
TSP. This can be acheived in O(n*) time (PADBERG
and GROTSCHEL®!) using an algorithm by GOMORY
and Hu.3

The temporal restrictions are imposed by con-
straints (6) to (8) which involve “big” numbers and
generally result in weak LP relaxations. Strong
temporal constraints may also be added. The strong
temporal constaints used in the algorithm are of
the form

n+1
m
X+ Y X xh<1
k=2 peAl
k+*y P +

for every link (i, j) in period m (18)

and

-

™~
# 1l
A

m P
Z x” +xjk < 1
meBY

for every link (j, #) in period p (19)

where

Al = {period p for every link (j, &)l

(TJ’,; <T7 '+cl +e)or

(Tf~'> T + ¢ + c, + DIFF))
Bj = <period m for every link (i, j)l
(TR <T7 ' +el+ c,) or
(Tp~* > T7 + ¢ + ¢, + DIFF)}
and

DIFF = max{0,c% ' — ¢4}.

The inclusion of the term DIFF allows the travel
time step function on link (j, #) to behave as if it
was a piecewise linear continuous function when
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the travel time in period p is less than that in the
preceding period p — 1, as discussed in Section 2.1

To identify all the violated strong temporal con-
straints of the current LP solution, each link with a
positive solution value is examined sequentially,
first with respect to its succeeding links for con-
straint (18) and then with respect to its preceding
links for constraint (19).

The algorithm adds strong SE and temporal con-
straints, re-solves and iterates until no more such
constraints can be added. At that point, temporal
constraints (6) to (8) of the formulation are added to
the current LP but only for those links with posi-
tive flows in the current LP solution since con-
straints (6) to (8) for links whose solution values
are zero are not binding and do not influence the
solution. The algorithm iterates until no more con-
straints of any type can be added. The strong SE
and strong temporal constraints are generally not
sufficient to ensure an integer solution when the
LP relaxation is solved. Additional valid and facet-
defining inequalities known for the TSP should be
extended to the TDTSP although few of them can
be easily identified (GROTSCHEL and PADBERG?*)).

Two upper-bounding heuristics are used to con-
vert the LP solution of the current relaxation to an
integer solution. They start from the depot and
construct a tour sequentially, using links having
nonzero values or zero reduced costs in the last LP
solution. The first heuristic uses a stack (HOrROWITZ
and SAHNI®®)) to store promising alternative routes
in order to return and investigate them after exam-
ining the current tour. A parameter is also used to
limit the number of alternatives that the algorithm
examines. The second upper-bounding heuristic is a
variation of the previous one in which the node to
be visited next is chosen randomly from among the
best candidates according to a given probability
distribution.

The primal or dual simplex method (DanTzIG!®)
from the XMP mathematical programming library
(MARSTEN*?1) was used to solve the LP problems. If
at any time the upper bound equals the lower
bound, the algorithm terminates with an optimal
tour. Otherwise, it terminates at point A of the
flowchart with an upper bound Z* (best known
tour) and a lower bound Z < Z*.

5. COMPUTATIONAL RESULTS

THIS SECTION presents the results of the application
of the nearest-neighbor TDTSP and TDVRP heuris-
tics and the cutting plane algorithm to randomly
generated test problems. Unfortunately, there are
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no preceding research results to compare with the
results of this paper. The algorithms were coded in
FORTRAN and implemented on a VAX/VMS-
11,/785.

5.1. Generation of Random Test Problems

Table I summarizes the characteristics of the
TDTSPs that were generated randomly to test the
heuristics. Altogether 96 TDTSPs were generated
and solved with: (1) 10, 15, 20 and 25 nodes; (2)
step functions as travel time functions with two or
three time intervals per link on average; and (3)
four distributions of the number of time intervals
across the links of the network (i.e., the number of
parallel links between each pair of nodes). One
deterministic and three probabilistic distributions
were used with different variances.

For each generated problem, the number of nodes,
the distribution of the number of time periods, and
the seed for the generation of the random numbers
were given. The travel time for the earliest time
period of link (i, j), ¢, was generated from a uni-
form [20, 80] distribution with the result rounded to
the next integer. The travel times of subsequent
time periods for link (7, j) were generated from a
uniform [cilj - 20, cllj + 20] distribution with the re-
sult rounded to the next integer. Since the travel
time on a link depends on the link’s distance, it is
reasonable to generate correlated travel times for
parallel links.

The duration of a time period was also generated
randomly so that the upper bound of the last time
period was not too large but also so that the length
of any time period was not smaller than its travel
time. The delivery time for each customer was gen-
erated from a uniform [10, 20] distribution with the
results rounded to the next integer.

In addition, for the TDVRPs the number of ve-
hicles was generated from a uniform [n/6, n/2]
distribution with the results rounded to the next
integer. The number of vehicles and the vehicle
capacities were generated so that the TDVRP test
problems vary in the number of vehicles and the
“tightness” of the capacity constraints. The vehicle
capacities were generated so that the average vehi-

TABLE I
Characteristics of TDTSP Test Problems
Factors Levels
No. of nodes 10 15 20 25
Average No. of intervals per link 2 3
Distribution of No. of intervals per link Det Pr1 Pr2 Pr3
No. of cases 32
Replications per case 3
Total No. of problems 96

cle capacity, AVCAP, was

n
AVCAP = ( Y d +d,,, )/K (20)
1=1

where d_,. = max,d,. If AVCAP was less than
d.x Or if the total capacity divided by the total
demand was less than 1.1 when AVCAP was com-
puted using (20), equation (21) below was used
instead

AVCAP =2 Y d,/K (21)
i=1

The capacity of a vehicle was then generated from a
uniform [d_,,,,2AVCAP - d_, ] distribution. More
details about the generation of the problems and
additional test results can be found in
Malandraki.[8!

5.2. Nearest-Neighbor TDTSP Heuristic
Results

The NN1, NN2 and NNR heuristics were applied
to the 96 test problems. Three versions
(NNR1,NNR2,NNR3) of the probabilistic NNR
heuristic were tested using different distributions
for the probability with which a link is chosen for
inclusion from among the best links. These distri-
butions are shown in Table II.

The results from the five heuristics are shown in
Table III. Each entry in the table is the average
over the twelve problems with the same number of
nodes and the same average number of time inter-
vals per link. The average number of links for the
test problems is shown in the third column. For
each heuristic, the average ratio of the heuristic
solution over the best known solution is shown. The
best known solution may have been obtained by
methods other than the nearest-neighbor heuris-
tics.

All the nearest-neighbor TDTSP heuristics per-
form similarly except for the NN1 heuristic which
exhibits the worst results. The three versions of the
probabilistic heuristic perform similarly, with ver-
sions NNR2 and NNRS3 slightly better on the aver-
age.

The execution times of the five heuristics are
shown in Table IV. The CPU time does not include
the time needed to read the input file of a problem.
As expected, the NN1 heuristic needs the smallest
amount of CPU time and the NNR heuristics re-
quire the most CPU time. Note that all average
times are less than one second. Overall, comparing
both the solution results from Table III and the
CPU times from Table IV, the NN2 heuristic seems
to give the best results. The probabilistic heuristics
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TABLE I1

Probabilities of Links Being Chosen in Probabulistic
Nearest-Neighbor TDTSP Heuristic

Version Best Link 2nd Best 3rd Best
NNR1 0.75 0.15 0.10
NNR2 0.80 0.15 0.05
NNR3 0.85 0.11 0.04

though may find a better solution if they are ap-
plied for a longer time.

5.3. Nearest-Neighbor TDVRP Heuristic
Results

The nearest-neighbor heuristics for the TDVRP
without time windows were applied to 32 randomly
generated test problems. The problems are the same
as those generated for the TDTSP in terms of their
common characteristics (network configuration,
travel times, time periods, etc.) but in addition they
have the number of available vehicles, demands
and capacities generated as described in Section
5.1. Four distributions of the number of time inter-
vals per link were again employed but only one
replication per case was used.

Two versions (SEQ-SL and SEQ-LS) of the se-
quential nearest-neighbor TDVRP heuristic were
tested as well as the simultaneous TDVRP heuris-
tic (SIM). The SEQ-SL and SIM heuristics fill the
vehicles from smallest to largest and the SEQ-LS
from largest to smallest. The heuristics were ap-
plied as follows. First, all three heuristics were
applied for the original number of available vehi-
cles. If the solution of the SEQ-SL and SEQ-LS
heuristics used less than the available number of
vehicles, the SIM heuristic was applied again using
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those vehicles used in the best solution found so
far. The best solution found by the two applications
of the simultaneous heuristic is reported.

Table V shows the results of the TDVRP heuris-
ties. Each entry is the average of the four problems
with the same number of nodes and average num-
ber of time periods per link. There were a few cases
for which the heuristics failed to obtain a feasible
solution (although a feasible solution was found by
inspection). These cases are not considered in the
computation of the averages. The third column of
Table V shows the average number of links of the
problems. The fourth column shows the average
ratio of total demand over total capacity of the
available vehicles. The remaining columns show
the average ratio of the heuristic solution over the
best solution and the average number of vehicles
used. The SEQ-LS heuristic finds consistently bet-
ter solutions than the SEQ-SL. Fewer vehicles of
larger capacities are used in the SEQ-LS solutions
with smaller total travel times. The order in which
the vehicles are filled seems to influence the solu-
tion considerably. The results of the SIM heuristic
are comparable to those of SEQ-LS but not better
for out sample of problems.

Table VI summarizes the execution times for the
heuristics. The CPU times are extremely small for
problems with up to 25 nodes. On the average, the
SEQ-LS heuristic appears to perform best consider-
ing both the average CPU times and the ratios of
Table V.

5.4. Results of the Cutting Plane Algorithm

At the beginning of the cutting plane algorithm
an optimal solution is bounded from above by the

TABLE III
Results of Nearest-Neighbor TDTSP Heuristics

Heuristic Solution/Best Known Solution

Intervals No of
per Link n Links NN1 NN2 NNR1 NNR2 NNR3
2 10 181.33¢ 1.159 1.104 1.063° 1.080 1.076
15 424.50 1.152 1.070 1.098 1.072 1.082
20 764.00 1.116 1.070 1.096 1.084 1.072
25 1208.00 1.114 1.050 1.091 1.045 1.053
Avg 644.46 1.135 1.073 1.087 1.070 1.071
3 10 270.25 1.136 1.050 1.076 1.085 1.073
15 634.50 1.164 1.098 1.099 1.103 1.093
20 1150.25 1.161 1.070 1.097 1.062 1.058
25 1806.08 1.090 1.043 1.083 1.045 1.046
Avg 965.27 1.138 1.065 1.089 1.074 1.068
Overall Avg 804.86 1.137 1.069 1.088 1.072 1.069

“ Values shown are averages over 12 problems (i.e., four distributions of number of intervals per link and three replications per

distribution).
® Values in bold indicate the best results in each row.
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TABLE IV
CPU (VAX-11 / 785) Times (Sec) for the TDTSP Heuristics

Intervals
per Link n NN1 NN2 NNR1 NNR2 NNR3
2 10 0.03* 0.05 0.10 0.09 0.09
15 0.05 0.10 0.22 0.23 0.23
20 0.06 0.19 0.47 0.48 0.47
25 0.08 0.36 0.89 0.89 0.91

Avg 0.06 0.18 0.42 0.42 0.42

3 10 0.03 0.05 0.09 0.10 0.11
15 0.04 0.11 0.24 0.24 0.25
20 0.06 0.23 0.49 0.49 0.51
25 0.08 0.41 0.91 0.90 0.91

Avg 0.05 020 043 0.43 0.44

Overall Avg 0.05 019 043 0.43 0.43

*Values shown are averages over 12 problems (ie., four
distributions of number of intervals per link and three replica-
tions per distribution).

original upper bound (OUB) (best known solution of
the nearest-neighbor heuristics) and from below by
the original lower bound (OLB) (solution of the
original LP relaxation). After the application of the
cutting plane algorithm, a new final upper bound
(FUB) on an optimal solution may be obtained (by
the upper-bounding heuristics) and a higher final
lower bound (FLB) (from the addition of SE and
temporal constraints). If the FUB and FLB are
equal, an optimal solution is obtained. Otherwise,
the effectiveness of the algorithm is indicated by
the “gap” between these bounds. The lower bound
generally increases monotonically at every iteration
but the upper bound does not necessarily decrease
at every iteration.

Table VII shows the average number of links
after the preparatory phase (the number before the
preparatory phase is shown in Table III). Each
entry is the average value over the twelve problems
with the same number of nodes and the same aver-
age number of intervals per link. The table also
shows the average and maximum values of the gap
which is a percent measure computed as GAP =
100*(FUB-FLB)/FLB. The average gap tends to
increase with the number of nodes and the number
of time periods. It is generally quite large, about
20% on the average for the largest problems. A
large gap may be the result of omitted cutting
plane constraints and/or the inability of the
upper-bounding heuristics to find good solutions.

Ratiol and Ratio2 are additional effectiveness
measures computed as follows: Ratiol = 100*(FLB-
OLB)/(OUB-OLB); Ratio2 = 100*(OUB-
FUB)/(OUB-OLB); and Ratio = Ratiol + Ratio2.
Ratiol and Ratio2 measure the percentage of the
original difference between the upper and lower
bounds that is eliminated as a result of the increase
in the lower bound and the decrease in the upper
bound correspondingly. Ratio represents the com-
bined result. The three Ratio measures depend on
the OUB. Ratiol tends to decrease with the number
of nodes and to increase with the number of time
intervals. Ratio2 is inconsistent, probably reflecting
differences in the accuracy of the OUB. On average,
more than 35% of the difference between the upper
and the lower bounds is eliminated.

The last column of Table VII shows that the
upper-bounding heuristics found an improved or at
least as good a solution as the OUB in 2/3 of the
problems. This measure exhibits no trend in terms

TABLE V
Results of Nearest-Neighbor TDVRP Heuristics
Intervals Total Demand SEQ-SL SEQ-LS SiM

per No of over Total Heur sol/ No of Heur sol/ No. of Heur sol/ No. of
Link n Links Capacity Best sol vehicles Best sol vehicles Best sol vehicles

2 10 182.75¢° 0.62 1.148°% 2.67 1.000° 2.00 1.123° 2.67

15 427.25 0.57 1.130 4.00 1.001 3.00 1.037 3.25

20 763.25 0.71 1.182°% 4.67 1.062° 2.67 1.000° 2.67

25 1201.25 0.73 1.126 6.00 1.029 5.00 1.016 5.50

Avg 643.63 0.66 1.144 443 1.022 3.29 1.042 3.64
3 10 272.75 0.76 1.077 3.00 1.005 2.75 1.015° 2.00

15 630.50 0.73 1.040 4.75 1.005 4.00 1.012 4.25

20 1153.25 0.64 1.193 5.00 1.074 3.50 1.041 3.50

25 1823.25 0.54 1.202 7.50 1.045 4.75 1.003 4.75

Avg 969.94 0.66 1.128 5.06 1.032 3.75 1.018 3.73
Overall 806.78 0.66 1.135 4.77 1.027 3.53 1.029 3.69

N Values shown are averages over four problems (four distributions of number of intervals per link).
® The heuristic failed to obtain a feasible solution in one problem out of four.
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TABLE VI
CPU (VAX-11 / 785) Times (Sec) of TDVRP Heuristics
Intervals No of
per Link n Links SEQ-SL SEQ-LS SIM
2 10 182.75“ 0.05 0.05 0.06
15 427.25 0.08 0.08 0.08
20 763.25 0.11 0.10 0.10
25 1201.25 0.12 0.13 0.18
Avg 643.63 0.09 0.09 0.11
3 10 272.75 0.06 0.06 0.06
15 630.50 0.09 0.09 0.12
20 1153.25 0.13 0.09 0.12
25 1823.25 0.13 0.11 0.17
Avg 969.94 0.10 0.09 0.11
Overall Avg 806.78 0.10 0.09 0.11

® Values shown are averages over four problems (four distri-
butions of number of intervals per link).

of the number of nodes, although results for prob-
lems with two time intervals per link seem to be
better than those with three intervals per link.

The average and the maximum CPU times are
shown in Table VIII both with and without the use
of the probabilistic upper-bounding heuristic which
has very high CPU times. The time needed for the
preparatory phase, to read the problem inputs, and
to set up the data structures of the LP is not
included. The average CPU times increase with the
number of links, as expected , since the number of
links corresponds to the number of binary variables
of the LP. The CPU time increases quickly with the
number of time periods. The maximum CPU times
seem to be influenced more than the average times
by the number of nodes.
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6. CONCLUSIONS

THIS PAPER defines, formulates, and develops
heuristic algorithms for both the time dependent
traveling salesman problem (TDTSP) and the time
dependent vehicle routing problem (TDVRP). Prop-
erties of the problems are examined indicating that
most of the existing heuristics for the nontemporal
problems cannot be easily extended to the time
dependent problems. Nearest-neighbor heuristics
for the TDTSP and the TDVRP without time win-
dows are presented as well as a cutting plane
heuristic algorithm based on a mixed integer linear
programming formulation. The algorithms are
tested on randomly generated problems with 10 to
25 nodes and with travel times represented by step
functions of two or three time periods per link on
average.

The nearest-neighbor heuristics require very low
computation times but the cutting plane algorithm
is much more expensive computationally. The cut-
ting plane algorithm exhibits large gaps between
the value of the best feasible solution obtained and
the solution of the final LP relaxation. The gaps
increase with the number of nodes and the average
number of time periods per link. The cutting plane
algorithm solves only small problems but finds a
solution better than or at least as good as the
solution obtained by the nearest-neighbor heuris-
tics in 2 /3 of the problems tested.

The time dependent problems represent an ur-
ban, congested environment more accurately than
do their nontemporal counterparts but they are
more difficult to solve. More research needs to be
devoted to the development of algorithms for the
time dependent problems. The algorithm need also

TABLE VII
Effectiveness Indicators of TDTSP Cutting Plane Algorithm

Intervals Links after

Percent Gap

Percent Runs with Cutting

per Preparatory Ratio 1 Ratio 2 Ratio Plane Heurnistic at Least
Link n Phase Avg Max % % Yo as Good as NN
2 10 169.25¢ 9.19 20.05 20.53 18.82 39.35 58.33
15 408.25 11.48 16.79 12.93 22.32 35.25 66.67
20 744.17 11.15 16.04 13.82 26.98 40.80 83.33
25 1181.83 13.27 17.30 12.66 15.43 28.09 66.67
Partial 625.88 11.27 20.05 14.98 20.89 35.87 68.75
3 10 246.00 14.83 20.22 22.40 13.38 35.78 50.00
15 603.17 16.49 25.85 15.75 25.84 41.59 66.67
20 1110.25 18.86 25.55 17.60 14.77 32.37 75.00
25 1758.92 20.65 31.81 14.21 13.27 27.48 66.67
Partial 929.59 17.70 31.81 17.49 16.81 34.30 64.58
Overall 777.73 14.49 31.81 16.24 18.85 35.09 66.67

¢ Values shown are computed over 12 problems (i.e., four distributions of number of intervals per link and three replications per

distribution).
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TABLE VIII
CPU Times of TDTSP Cutting Plane Algorithm

CPU (VAX) Time (Sec)

Intervals

per Total Time Without Probabilistic Heuristic

Link n Avg Max Avg Max
2 10 24.22* 37.67 22.43 36.15
15 58.62 68.14 52.32 61.47
20 117.36 153.23 101.52 135.76
25 223.67 355.31 195.48 328.29
Partial 105.97 355.31 92.94 328.29
3 10 39.39 58.00 36.90 55.29
15 97.70 118.19 88.22 109.19
20 207.19 286.29 184.96 262.40
25 431.38 537.98 385.07 494.25
Partial 193.91 537.98 173.79 494.25
Overall value 149.94 537.98 133.36 494.25

“ Values shown are computed over 12 problems (i.e., four distributions of number of intervals per link and three replications per

distribution).

to be tested on real data collected from congested
networks.
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