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The use of hierarchical and multiobjective programming in
public decision making is reviewed. The conventional set cov-
ering (CSC) problem is formulated for locating emergency
medical service (EMS) vehicles. Its computational and practi-
cal limitations are discussed. The desire to account for inter-
district responses leads to the formulation of a hierarchical
objective set covering (HOSC) problem in which we find the
minimum number of vehicles needed to cover all zones while
simultaneously maximizing the extent of multiple coverage of
zones. Several important properties of the HOSC problem are
derived, including the fact that for certain values of the relative
weights associated with the two objectives, no dominated zones
are included in the solution. The CSC and HOSC formulations
are applied to a 33-zone problem for Austin, Texas, and com-
putational experiences are indicated.

1. INTRODUCTION
Municipal service systems, such as police and fire departments and
emergency medical services, must meet a variety of social, economic, and
political objectives. Several authors have discussed the need to plan

! The work reported on here was performed while both authors were at the University
of Texas at Austin.
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public facilities using a multiobjective framework.”® ! To assist deci-
sion-makers, in identifying desirable modes of operating such services,
analysts have used optimization techniques including multiobjective
programming,” goal programming!'*! and hierarchical programming."®)

When a clear ranking of the objectives does not exist, multiobjective
programming techniques are valuable tools in assisting decision-makers
to identify tradeoffs between competing objectives. Multiobjective pro-
gramming has been applied to problems in water resource planning' ! as
well as location problems.'*] Goal programming techniques have been
used to address such problems as school desegregation,!® university
staffing,/"* and the allocation of police patrol car units to districts.[?”!

When a clear ranking or hierarchy of the objectives exists, hierarchical
programming techniques are applicable. In this paper, we are concerned
with two hierarchical objectives: the primary objective is to minimize the
number of ambulances needed to satisfy a service requirement; the
secondary objective is to maximize the extent of multiple coverage of
zones. A hierarchical programming model is formulated and several
model properties are proven. Computational experience with the model
is also discussed.

Hierarchical programming has been used by several other authors in
addressing location problems. PLANE AND HENDRICK!"! discuss the re-
sults of a study to locate fire stations. Their primary objective was to
minimize the number of fire stations needed to reach all points in the
specified time limits. Their secondary objective was to minimize the
number of new fire stations that had to be built. KOLESAR AND
WALKER"! outline a hierarchical approach to the problem of relocating
fire companies during busy periods. Their primary objective was to
minimize the number of companies to be relocated while ensuring that a
minimum level of fire protection was provided to all parts of the city.
Their secondary objective was to minimize the total expected response
time to alarms that occur while the companies are relocated.

2. PROBLEM STATEMENT

IN THIS PAPER we are concerned with locating emergency medical service
(EMS) vehicles in a geographic region so as to cover all of the demands.
More formally, we divide the region into N zones and say that the
demand in zone i is covered by an EMS vehicle in zone j if the expected
response time for a vehicle in zone j to a call in zone { is less than or equal
to some prespecified upper bound 7. We require that all zones be covered
by at least one vehicle. The response time may be defined in a variety of
ways. The expected travel time between zone centroids is a frequently
used proxy for response time. Use of this proxy necessitates several
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assumptions including the assumption that the expected dispatch delay
is independent of the zone in which a call for service originates. We are
not concerned here with the definition of response time that is used. We
simply assume that the analyst knows the value of the expected response
time, d,,, for an ambulance in zone j to respond to a demand in zone i for
all zone pairs i and j. We note that we do not require d,, = d;., although
this will frequently be the case. Also, if institutional constraints prohibit
an ambulance in zone j from responding to demands in zone i we may set
d,, = .

Traditionally, this problem has been formulated as the set covering
problem!" in which one’s objective is to minimize the number of vehicles
required to cover all zones with at least one vehicle. Formally, the
problem is stated as the following integer programming (IP) problem:

minimize Z,=Y,X, 1
subject to
Y,a,X,=1 foralli 2)
X,=0,1 forallj 3)
where

X = { 0 if an ambulance is not located in zone j
d 1 if an ambulance is located in zone j

_ {0ifd,,>T
W=\ 1ifd,<T

and

Z, = the number of ambulances required.

Similar set covering formulations have been used by others in the context
of locating emergency service vehicles.'"'*?*%] We let A(T) be the
matrix of a,, terms for a maximum allowable response time T and call
A(T) the coverage matrix. We omit the notation 7 whenever possible. It
should be clear that as the upper bound on the allowable response time,
T, is reduced, the number of ambulances needed will increase or remain
constant.

One approach to solving this problem is to replace the integer con-
straint (3) with a non-negativity constraint and to solve the resulting
linear programming (LP) problem. The LP algorithm may terminate with

a. No feasible solution
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b. A noninteger value for the objective function (and at least one of the
decision variables, Xj, also noninteger)

¢. An integer value for the objective function and noninteger values for
the decision variables, or

d. Both the objective function and the decision variables integer.

No feasible solution will be found only if there exists at least one zone
i such that Y ; a,, = 0, which implies that a,, = 0. This can occur if the
intrazonal response time d,, is very large. In such a case, a redefinition of
the zone structure is needed to reduce the intrazonal response times. We
assume that ), a,; = 1 for all zones i, or alternatively that there exists
some d,; < T for all zones i. Generally, we will have d,, < T'and a,, = 1 for
all zones i.

If the LP algorithm terminates in a noninteger solution (cases (b) and
(c) above), the LP solution may be used as a lower bound on the value of
the objective function or the IP problem. ToREGAS ET AL.?? report
success in obtaining integer solutions in such cases through the addition
of the constraint

Yo Xi=<Zu> +1 4)
where

Z,1. = value of the LP objective function

<y> = largest integer less than or equal to y.

If the optimal LP objective function is an integer, but the decision
variables are noninteger, using the LP solution as a lower bound on the
IP objective function does little to guide the search for integer solutions.
This is illustrated by the coverage matrices shown in Figure 1. In both
cases, one solution at which the LP algorithm may terminate is

X1=X2=X3=X5=1/2;Z=2.

In Case I, integer solutions using only two vehicles exist (X; = X; = 1 or
X = X3 =1). In Case II, no such integer solution exists; three ambulances
are needed to cover all 6 zones. (One such solution is X; = X, = X5 = 1.)
Other examples of this problem are illustrated in Tables I and II below
when the maximum allowable travel time is 9 or 14 minutes. In such
situations, special set covering algorithms!! or heuristics’® may be
needed.

In addition to computational difficulties associated with obtaining
integer solutions for the IP set covering problem, the traditional formu-
lation (1), (2), and (3) fails to account explicitly for interdistrict responses.
In effect, the algorithm assumes that the vehicle that is assigned to cover
some zone i will always be available to respond to a call from that zone
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CASE I:
Al = [aij] = 110000
110000
101000
010110
001010
00101

o

CASE II1:
At - [a]l]- 1000010
’ 110000
101000
011100
00101 0
[0 1001

Fig. 1. Example coverage matrices.

and will never be busy. In practice, however, this will not be the case.
Frequently the most desirable ambulance to dispatch to a call in zone i
will be busy when a call from zone i is received. In such a case an
interdistrict response is needed.

Many stochastic models of EMS vehicle deployment explicitly account
for interdistrict calls.”'®'®! Deterministic optimization approaches like
the set covering formulation, the median problem!®'®! or the center
problem!® ! do not model interdistrict responses. Recent stochastic
extensions to the median problem!” ! also ignore interdistrict responses.
Because of the occurrence of interdistrict dispatches, we would like the
set of locations that is selected to provide as much multiple coverage as
is possible. In that way, the system will have the capability to respond to
calls expeditiously even if the most desirable ambulance to dispatch is
busy at the time a call is received.

The traditional single objective set covering problem can be modified
to incorporate two objectives:

a. Minimize the number of ambulances that are required to cover each
of the N zones in time T and

b. Given the minimum number of ambulances, maximize the sum over
all zones ¢ of the number of ambulances in addition to the one
required by objective (a) above that can respond to calls in zone i
within time 7.

Objective (a) is the traditional set covering objective. Objective (b) is
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designed to select from among the alternative optima for objective (a)
the one that maximizes the amount of multiple coverage in the system.
Note that objective (b) weights equally all ambulances that can respond
to a call in zone i. From a practical point of view, one might like to use a
decreasing set of weights for additional ambulances; that is, one might
like to weight the second ambulance more than the third; the third more
than the fourth; and so on. For computational reasons, we do not adopt
this approach.

3. MODEL FORMULATION

FormaLLY, we modify the CSC problem as follows:

minimize Z,= WY, X, -Y.8S, (5)
subject to
Yia,X;~8Si=1 for all ¢ (6)
X,=0,1 forally (7a)
S.=0 for all i (7b)
where

S; = number of additional EMS units capable of responding to a call in
zone I in a time less than or equal to T
W = some positive weight

and all other variables are as defined above. We call this the hierarchical
objective set covering (HOSC) problem. Plane and Hendrick!"®! used a
similar formulation in their problem of locating fire stations.

4. SOLUTION CHARACTERISTICS

THE MODEL of Section 3 has several desirable properties. Many of these
properties depend on the value of W, the weight associated with mini-
mizing the number of vehicles deployed. We begin with

ProrosITION 1. For any value of W, inequality (6) will be satisfied by a
strict equality for all zones i in the optimal solution.

Proof. Suppose there exists some zone i for which the left hand side of
(6) exceeds 1. Then S, can be increased by the difference between the left
hand side and 1. This will reduce the objective function by an equal
amount. Hence, the original solution (in which the left hand side of (6)
exceeded 1) could not be optimal.

One approach to solving the IP problem is to substitute a non-negativ-
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ity constraint for (7a) and to solve the resulting LP problem. The
following proposition applies to this LP problem.

ProposITION 2. If W > N, then 0 < X,* < 1 for all j, where stars (*)
indicate optimal values.

Proof. (i) X;* = 0 for all j by the non-negativity constraint.
(ii) let X,* = 1 + §, 8 > 0. Consider reducing X,* to 1. This reduces S,
by 8 a,, for all i. So ¥ S, is reduced by

8. a, < N&.

Therefore, the value of the objective function is reduced by at least 6( W
— N). Since 8 > 0 and W > N by assumption, Z; is reduced by a positive
amount. Therefore, X; = 1 + 8, § > 0 can not be optimal.

We say that zone & is dominated by zone j if all zones covered by zone
k are also covered by zone j and zone j covers at least one zone not
covered by zone k. Formally, j dominates % if

a,; = auw, for all i
and a,; > au, for at least one zone i.
This definition leads to

ProposITION 3. If W > N, the optimal solution to the HOSC problem
will not include any dominated zones.

Proof. Assume zone j dominates zone k. Let ¢; = ¥, a,, = number of
zones an ambulance in zone j can cover. By definition ¢, < N for all zones
7 and by dominance, ¢, + 1 < ¢, < N.

Case (i). Assume X, = 1, X; = € > 0 in the optimal solution. By
dominance, X, = 1, X = 0 is feasible if X, = 1 and X, = € is feasible. Let

Zy = value of the objective function when X, = 0
Z. = value of the objective function when X, = e.
Then
Z.=Zo+ We — c1e
=Zo+ (W~ cr)e
>Zy+ €

But since Z, is feasible, Z, or X, = € > 0 can not be optimal. In other
words, the dominated zone can not be in the optimal basis for the LP
problem.
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Case (ii). Assume X, = y < 1, X, = € > 0 in the optimal solution.
Consider increasing X, by 8 < min (¢, 1 — y) and decreasing X; by 8. By
dominance X’ = y + § and X, = € — § are feasible. Define Z, and Z._; in
the obvious manner in terms of the value of X and X,’. Then

Zes=2Z. — c;6 + cié
=Z. —8(c,— cr)
=Z -6

Since we may choose § > 0, the original solution (X; =y <1, X, = ¢ > 0)
can not be optimal. If e = 1 — y, we can set § = € and obtain X, = 0
thereby forcing X from the basis. If e > 1 — v, we can set § = 1 — y and
force X, = 1, Xz = € = 1 + y > 0. But by case (i) above we can force X, to
0 in this case as well.

5. CHOICE OF W

As sHOWN below in Section 6, the hierarchical objective set covering
formulation leads to an all integer solution more often than does the
conventional set covering formulation. This is in part due to the automatic
exclusion of dominated zones in the hierarchical objective formulation;
the solution to the LP analog of the CSC problem may include dominated
zones.

While the hierarchical objective formulation excludes dominated zones
from the solution, it does not necessarily result in a solution utilizing the
minimum number of vehicles. This results directly from the fact that the
objective function involves two conflicting objectives. This is illustrated
by the example in Figure 2. It is clear that only two vehicles are required
to cover the 11 zones in the example. One allocation of 2 vehicles that
minimizes objective function Z, in (5) is X; = X5 = 1 (Solution 1). The
resulting objective function value is 22. However, the HOSC problem
when constrained to integer solutions will terminate with X; = X3 = X,
= 1 (Solution 2) and an objective function value of 21. This difficulty
may be alleviated by increasing the value of the weight W associated
with the number of vehicles. For example, if we had used W = 14 instead
of W = 12, we would have Z; = 26 for X, = X; = 1 (Solution 1) and Z, =
27 for Xo = X3 = X4 = 1 (Solution 2). The IP algorithm would terminate
with Solution 1, which uses the minimum number of ambulances.

This leads to

ProposITION 4. Let {X;*, S;*} be the optimal solution to the HOSC
problem (5), (6), (7b) and either (7a) or its non-negativity analog. Let
{X), S/} be any other feasible solution to the same form of the HOSC
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A=[a;;]= 1 0011000000 0]
01001111111
10101111111
10011 111111
01111000 O0O0O0
01110100000
01110010000
01110001000
011100001 0 0
01110000010
_0 1110000 0 0 1j

N = 11 zones

W=12

Solution 1: XA = X5 = 1 all other Xj = 0; Z2 = 22

Solution 2: X2 = X3 = XA = 1 all other Xj = 0; Z2 =21

Note 1: HOSC may not lead to the deployment of the minimum number of
vehicles.

Note 2: When the LP analogies of the CSC and HOSC formulations were ap-
plied to this problem, the following results were obtained.

[of: ] X1 = X2 = 1 all other Xj = 0; ZlL = 2
HOSC: W = 12
X2 = X3 = X4 = X5 = 0.5 all other Xj = 0
Z2L = 20
W = 14
X2 = X3 = X4 = X7 = 0.5 all other Xj = 0
Zop = 24

Fig. 2. Example to illustrate the influence of W on the optimal solution.

problem. If Y. S.* < W, then ¥ X/ > Y X,* — 1, or equivalently ¥ X, =
Y. X;* in the IP problem.

Proof. Assume Y X/ < ¥ X,* — 1 or equivalently
X, -¥Y¥X*+1=<0.
Optimality of {X,*, S;*} implies
WYX —ES*=WEX' -XS/
or LS =WEZEX -ZX")+3ES*
<WIX -YX" )+ W

Copyright © 2001 All Rights Reserved
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since ¥ S;* < W by assumption. So
TS <WEX -YX*+1)=<0

by the assumption that } X’ < ¥ X,* — 1. But this states that ¥ S/’ < 0
which contradicts the assumption that {X}/, S/} is feasible since feasibility
requires S’ = 0 for all 7 or } S/ = 0. Therefore we have

YX/>YX*—1 if $S*<W.

The implications of Proposition 4 warrant further discussion. The
proposition says that if the solution obtained to the HOSC problem
involves only integer valued decision variables and if ¥ S;* < W, then the
solution is also an optimal solution to the CSC problem. That is, the
solution employs the minimum feasible number of vehicles. The propo-
sition further implies that if )} X,* in the solution to the LP analog of the
HOSC problem is noninteger and Y, S.* < W, then <Y X,*> provides a
lower bound on the IP solution to the CSC problem. This is true because
feasibility in the CSC problem implies and is implied by feasibility in the
HOSC problem.

Finally, if } S;* = W in a solution to the HOSC problem, Proposition
4 suggests that W be increased to W where ¥ S,* < W. In the solution to
the revised problem with ¥ S;* < W, we are assured that ¥ S,* < W
where S.* = optimal value of S, in the revised problem using ¥ S, < W.
Therefore, Proposition 4 will apply to the solution of the revised problem.

In short, while the solution to the HOSC problem may not employ the
minimum number of vehicles, Proposition 4 allows us to make fairly
strong statements about the minimum number when ¥ S,* < W. The
proposition also provides important guidance on appropriate settings for
W if one wishes to minimize the number of vehicles deployed. Also,
Proposition 3 guarantees that if W > N, the solution to the HOSC
problem will not include any dominated zones.

6. COMPUTATIONAL EXPERIENCE

THE HOSC formulation was applied to data for Austin, Texas. The city
was divided into 34 zones corresponding to census tracts. After some
preliminary analysis and as a result of discussions with the director of
the Austin EMS service, one of the zones was deleted from further
analyses. Few demands for EMS services were recorded in this zone, yet
the HOSC and CSC formulations always located an ambulance in the
zone because it was remote from the city center. The results discussed
below are for the 33-zone problem obtained by eliminating this particular
zone.

As discussed above, in Section 2, we use expected travel time as a proxy
for response time. Figure 3 is the travel time matrix for the 33 zones. All
intrazonal travel times were set equal to 1 minute.

Copyright © 2007 All Rights Reserved
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TABLE 1
Results of Conventional Set Covering Problem Applied to Austin Data
Mlovabis Qe Muligle Mot of Vel Locste
Tore Value TS Variables nes
3 27 0 Integer 1,2 3,4,59,10,11, 12, 13, 16, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33
4 20 0 Integer 1,2, 8, 13, 15, 16, 18, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 32, 33
5 16 7 Integer 2, 10, 11, 17, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 32, 33
6 12 5 Integer 5, 10, 12, 16, 21, 22, 24, 27, 29, 30, 32,
33
7 8 4 Integer 11, 16, 22, 24, 29, 30, 32, 33
8 6 6 Integer 9, 20, 22, 25, 28, 33
9 6 Noninteger
10 3.75 Noninteger
11 3 24 Integer 19, 28, 31
12 2 11 Integer 15, 18
13 2 17 Integer 11, 16
14 2 Noninteger
15 1 0 Integer 7
16 1 0 Integer 6
17 1 0 Integer 4
18 1 0 Integer 4
19 1 0 Integer 2
20 1 0 Integer 2

Table I summarizes the output of the LP analog of the CSC formulation
applied to the Austin data. The maximum allowable travel time, 7', was
varied from 3 to 20 minutes in 1-minute increments. In only 3 of the 18
cases was a noninteger solution obtained.

Table II presents the results of the LP analog of the HOSC problem
when applied to the Austin data. The value of W was 34 or N + 1. In all
cases, the number of ambulances was the same as that found using the
CSC formulation. However, the zones identified by the HOSC formula-
tion differ from those found by the CSC model. This is due in part to
Proposition 3, which ensures that dominated zones are excluded from the
HOSC solution. For example, with a maximum allowable response time
of 11 minutes, zone 2 dominates zone 19 as shown in Figure 3. Conse-
quently, the HOSC solution includes zone 2 instead of zone 19. Also note
that in two of the three cases in which the CSC problem terminated in a
noninteger solution, the HOSC problem found an all integer solution.’

? When the same problems were run using the original 34 zones and a value of W = 35,
the CSC problem terminated in a noninteger solution 6 out of 18 times. In 5 of those 6
cases, the HOSC formulation identified an all integer solution with the minimum number



HIERARCHICAL OBJECTIVE SET COVERING MODEL / 149

TABLE II
Results of Hierarchical Objective Set Covering Problem Applied to Austin Data
Mlowibe  Qecive Namberof il ot Veics Loctd
Tume Value Deployed A Vanables
3 916 27 2 Integer 1,2 3,4,6,7,9, 10, 12, 13,
16, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30,
31, 32, 33
4 680 20 0 Integer 1,2, 8, 13, 15, 16, 18, 20, 21,
22, 23, 24, 25, 26, 27, 28,
29, 30, 32, 33
5 537 16 7 Integer 2, 10, 11, 17, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 32,
33
6 397 12 11 Integer 7, 10, 12, 16, 21, 22, 24, 27,
29, 30, 32, 33
7 258 8 14 Integer 4, 11, 16, 24, 27, 30, 32, 33
8 187 6 17 Integer 9, 20, 25, 27, 28, 31
9 165 6 39 Integer 8, 11, 16, 24, 27, 31
10 99 3.75 Noninteger
11 76 3 26 Integer 2, 28, 31
12 57 2 11 Integer 15, 18
13 43 2 25 Integer 3,11
14 39 2 29 Integer 7,11
15 H 1 0 Integer 7
16 1 0 Integer 6
17 1 0 Integer 4
18 34 1 0 Integer 4
19 34 1 0 Integer 2
20 34 1 0 Integer 2

The previously discussed constraint (4) was added to the CSC problem
for the three cases in which the CSC formulation terminated in a
noninteger solution. The results are shown in Table III. In only one of
the three cases (T = 14) did addition of this constraint result in an integer
solution. However, in that case, imposition of constraint (4) resulted in
more than the minimum number of ambulances being deployed, as shown
in Table II. This results from the fact that constraint (4) only applies if
Z,1. is itself noninteger; if it is integer, constraint (4) needs to be modified
to read

YX,=(Zw) =Zy. 8)

When constraint (8) was added to the two cases in which the CSC
formulation terminated in a noninteger solution, one of the two new

of ambulances. In the sixth case, the HOSC problem terminated with a noninteger solution,
which was identical to the CSC solution.

Copyright © 2001 All Rights Reserved
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TABLE III
Results of Imposing Lower Bound on Number of Vehicles
Travel Time l?uslgtg)l:e\?:il‘llxee Constraint Value Natu;t::;g::mon
9 6 6% Integer
7° Noninteger
10 3.75 4 Noninteger
14 2 2¢ Noninteger
3° Integer

? Indicates values found by imposing constraint (8).
® Indicates values suggested by following Toregas et al.®? and imposing constraint (4).

solutions was integer. Since (8) is not a binding constraint in these cases,
imposition of the constraint can result in an integer solution only if the
order in which variables enter and leave the LP basis is altered by the
constraint.

7. SUMMARY

IN THIS PAPER we formulated a hierarchical objective covering problem
for locating EMS vehicles. The approach attempts to account explicitly
for the importance of interdistrict responses. Several important properties
of the formulation are derived including the fact that the solution to the
multiobjective problem will not include dominated zones for a specified
range of weights on the two objectives. The authors are currently studying
hierarchical formulations of other location models, to determine whether
or not similar properties may be derived.

Computational experience with the model is discussed for a 33-zone
problem in Austin, Texas. Through an appropriate choice of the weights
of the objectives in the objective function, the number of vehicles iden-
tified by the HOSC formulation always equaled the number found by the
CSC formulation. However, the linear programming analog to the hier-
archical objective set covering model terminated in an integer solution
more often than did the LP version of the conventional set covering
model.
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